Engineering Conferences International ECI Digital Archives

5th International Congress on Green Process Engineering (GPE 2016)

Proceedings

6-22-2016

Integrating batch pyrolysis and fractional condensation (2D MFR) to get high-value products from biomass

Mohammad Hossain ICFAR – Western University, fberruti@uwo.ca

Chiara Barbiero *Western University, Canada,* cbarbier@uwo.ca

Ian Scott Agriculture and Agri-Food Canada

Franco Berruti ICFAR – Western University

Cedric Briens ICFAR – Western University

Follow this and additional works at: http://dc.engconfintl.org/gpe2016 Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, and Cedric Briens, "Integrating batch pyrolysis and fractional condensation (2D MFR) to get high-value products from biomass" in "5th International Congress on Green Process Engineering (GPE 2016)", Franco Berruti, Western University, Canada Cedric Briens, Western University, Canada Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/gpe2016/39

This Abstract is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Integrating Batch Pyrolysis and **Fractional Condensation (2D MFR)** to get High-value Products from **Biomass**

Mohammad Hossain, Chiara Barbiero, Ian Scott, Franco Berruti, Cedric Briens

te for Chemicals and Fuels from Alternative Resources Institute for Chemicals and Fuels

High-Value Products from Biomass

Solvent extraction:

- Expensive
- Time consuming
- Not environmental friendly

Traditional pyrolysis is much cheaper, easier and safer **but**:

- Complex liquid mixtures
- Thermally unstable products \rightarrow distillation is difficult

Objectives

Develop a better process combining:

- Batch pyrolysis
- Fractional condensation

- Apply the technology to:
 - Tobacco leaves
 - Tomato plant waste
 - Spent coffee grounds
 - Lignin

Nicotine from Tobacco Leaf

Pesticides from Tobacco leaf and Tomato plant waste

Colorado potato beetle (CPB)

Assay: % of beetles killed by bio-oil

Pesticides from Tobacco leaf and Tomato plant waste

Reactor	LC ₅₀ (mg/g)	
temperature cuts (°C)	Tobacco	Tomato
300-350	2.1	2.2
350-400	2.5	2.8

LC₅₀: concentration of bio-oil for 50% mortality

Anti-oxidants from Tobacco leaf, Tomato plant waste & spent Coffee grounds

Gallic acid is a strong anti-oxidant used as standard

Reactor temperature: 400-565 °C

Conclusions: Biorefinery applications

