Engineering Conferences International ECI Digital Archives

5th International Congress on Green Process Engineering (GPE 2016)

Proceedings

6-22-2016

Development of a mobile 100 kg/h plant for pyrolysis using a mechanically fluidized reactor

Dhiraj Kankariya Western University

Stefano Tacchino ICFAR – Western University

Dominic Pjontek *Western University*

Franco Berruti ICFAR – Western University

Cedric Briens ICFAR – Western University

Follow this and additional works at: http://dc.engconfintl.org/gpe2016 Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

Dhiraj Kankariya, Stefano Tacchino, Dominic Pjontek, Franco Berruti, and Cedric Briens, "Development of a mobile 100 kg/h plant for pyrolysis using a mechanically fluidized reactor" in "5th International Congress on Green Process Engineering (GPE 2016)", Franco Berruti, Western University, Canada Cedric Briens, Western University, Canada Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/gpe2016/38

This Abstract and Presentation is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in 5th International Congress on Green Process Engineering (GPE 2016) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Development of a Mobile, 100 kg/h Plant For Pyrolysis, Using a Mechanically Fluidized Reactor (MFR)

Dhiraj Kankariya, Stefano Tacchino,

Dominic Pjontek, Franco Berruti, Cedric Briens

How does the MFR work?

Thesis from Valentina Lago

Institute for Chemicals and Fuels

FEATURES	Compact	Easy to Operate	Rapid Heating (20 min)	Feed Flexibility	Pure Char	High value Oil
Mechanical Mixing	\checkmark	\checkmark			\checkmark	
Induction Heating	\checkmark	\checkmark	\checkmark			
Hot Electrostatic Precipitator	\checkmark	\checkmark				\checkmark
Condensation	\checkmark	\checkmark		\checkmark		\checkmark

Measurement method for Wall-to-bed Transfer

- Set mixer RPM
- Constant flowrate of water added to MFR bed
- Wait for steady state
- Record:
 - \circ Bed temperature
 - Wall temperature

Institute for Chemicals and Fuels from Alternative Resources

Equations:

(heat transfer from wall to bed) =

 (heat for evaporation) + (heat losses from bed)

 (heat for evaporation) = (liquid flowrate) x (water enthalpy change)

•Estimate of heat transfer coefficient:

- Neglect heat losses
- Underestimates heat transfer rate from wall to bed

Institute for Chemicals and Fuels from Alternative Resources

Two different bed materials were tested:

Properties	Units	Sand	Activated carbon
Particle diameter	μm	185	575
Particle density	kg/m ³	2650	750
Heat capacity	J/kg/K	830	1300

Two different reactors were tested:

Dimension	Units	Small MFR	MFR-1
Inner Diameter	m	0.1015	0.15
Height	m	0.127	0.25
Volume	litre	1.03	4.42

Wall- to-bed Heat Transfer with Sand Bed

FOR SMALL MFR:

Institute for Chemicals and Fuels from Alternative Resources

Western University

Wall- to-bed Heat Transfer with Sand Bed

FOR MFR-1:

Institute for Chemicals and Fuels from Alternative Resources

Western University

Results:

	FOR SMALL MFR			FOR MFR-1	
Superficial Steam Velocity (mm/s)	U _{AVERAGE} for all RPM (W/m².K)	U from Correlation (W/m².K)	Superficial Steam Velocity (mm/s)	U _{AVERAGE} for all RPM (W/m ² .K)	U from Correlation (W/m².K)
43 82	66 154	142 344	503	238	280
112	307	428	528	250	261

Wall-to-Bed Heat Transfer with Activated Carbon Bed

FOR MFR-1:

Institute for Chemicals and Fuels from Alternative Resources

Western University

GPE 2016 ¹³

Results:

FOR MFR-1				
Superficial Steam Velocity (mm/s)	U _{AVERAGE} for all RPM (W/m ² .K)	U from Correlation (W/m².K)		
168	73	104		
398	182	124		

Western University

Conclusions:

- High wall to bed heat transfer coefficient, comparable to regular fluidized beds
- Capability to produce high quality products
- Versatility of the products / process flexibility
- Easy operation
- Open avenues for new applications in biorefinery

Institute for Chemicals and Fuels from Alternative Resources Western University

GPE 2016

Acknowledgement

THANK YOU!

Institute for Chemicals and Fuels from Alternative Resources

Western University

