Engineering Conferences International ECI Digital Archives

Composites at Lake Louise (CALL 2015)

Proceedings

Fall 11-9-2015

Structural optimization of fiber-reinforced composite dental bridges

Yung Chen University of Minnesota, chen1954@umn.edu

Alex Fok University Minnesota, alexfok@umn.edu

Follow this and additional works at: http://dc.engconfintl.org/composites_all Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Yung Chen and Alex Fok, "Structural optimization of fiber-reinforced composite dental bridges" in "Composites at Lake Louise (CALL 2015)", Dr. Jim Smay, Oklahoma State University, USA Eds, ECI Symposium Series, (2016). http://dc.engconfintl.org/ composites_all/42

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Composites at Lake Louise (CALL 2015) by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

UNIVERSITY OF MINNESOTA Driven to Discover

Structural Optimization of Fiber-Reinforced Composite Dental Bridges

Yung-Chung Chen^{1,2} Alex Fok¹

1. MINNESOTA DENTAL RESEARCH CENTER FOR BIOMATERIALS & BIOMECHANICS School of Dentistry, University of Minnesota

2. INSTITUTE OF ORAL MEDICINE

College Of Medicine, National Cheng Kung University

UNIVERSITY OF MINNESOTA Driven to Discover

Replacing lost teeth

Dental implant

Dental bridges

Failure of FRC bridges

High failure rates

73.4% after 4.5 years

 Heumen et al., European Journal of Oral Sciences, 2009. 117(1): p. 1-6.

Main failure modes

- Fracture and delamination of veneering composite
- Fracture of connectors
- Debonding from supporting tooth

Aim of this study

 To create stronger dental bridges using bio-inspired structural optimization techniques

Learning from trees ...

Axiom of Uniform Stress - Claus MATTHECK

- Build-up of material in overloaded zones
- No build-up (or even reduction) in underloaded zones
- Derived structures are uniformly stressed

Claus MATTHECK, 1998, Design In Nature, Springer

Applying axiom to engineering components

Claus MATTHECK, 1998, Design In Nature, Springer

Fatigue life greatly increased

Optimization of a cantilever beam

Real-world examples

Nature, again, got there first!

UNIVERSITY OF MINNESOTA Driven to Discover

3-unit FRC bridge

Conventional design

Optimization of a 3-unit FRC bridge

After optimization:

- 30% reduction of maximum principal stress
- 2. 30% volume reduction of fiber substructure

Shi, L. and A.S.L. Fok, Dental Materials, 2009. 25(6): p. 791-801.

UNIVERSITY OF MINNESOTA Driven to Discover

Mechanical testing

Loaded to 400 N

UNIVERSITY OF MINNESOTA Driven to Discover

Visual inspection

Specimen with conventional layout Occlusal view

RCBB

Cracking

Location

- buccal surface
- lingual surface
- loading point

Percentage of failure

- Conventional layout → 100 % (20/20)
- Optimized layout
 → 28.5 % (6/21)

Micro-CT

UNIVERSITY OF MINNESOTA Driven to Discover

Acoustic emission

UNIVERSITY OF MINNESOTA Driven to Discover

Two-unit cantilever bridge

Advantages:

- Less tooth tissue removal
- **Easier to clean**
- **Less expensive**

UNIVERSITY OF MINNESOTA Driven to Discover

Materials & Methods

UNIVERSITY OF MINNESOTA Driven to Discover

Two-step optimization

1st **STEP:** Using isotropic SMT UMAT to obtain the cavity design

Two-step optimization

2nd STEP: Using orthotropic SMT UMAT to obtain the fiber layout

UNIVERSITY OF MINNESOTA Driven to Discover

Optimized vs conventional designs

Design	Optimized	Conventional
Bonding surface area	31.314	37.980
Retainer's volume	26.122	26.226

UNIVERSITY OF MINNESOTA Driven to Discover

Interfacial stress distribution

UNIVERSITY OF MINNESOTA Driven to Discover

Structural stress distribution

UNIVERSITY OF MINNESOTA Driven to Discover

Mechanical testing

Performance without fiber reinforcement

Performance with fiber reinforcement

UNIVERSITY OF MINNESOTA Driven to Discover

Translation to clinical practice

The Role of Temporisation in Interdisciplinary Periodontal and Orthodontic Treatment

Orthodontic Extrusion: An Adjunct to Implant Treatmen

Surface Treatment of Small Diameter Implants and Effect on Osseointegration and Crestal Bone Retent

Courtesy of Gerardo Sacco, Bari, Italy

Isambard Kingdom Brunel

Clifton suspension bridge

