Engineering Conferences International ECI Digital Archives

Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications

Proceedings

Fall 10-20-2015

Static vs. dynamic extraction – Comparing best practice for Single Use Technology

Paul Killian EMD Millipore Corp, paul.killian@emdmillipore.com

Ven A. Raman EMD Millipore Corp

Jessica Shea EMD Millipore Corp

Mae Santos-Rosa EMD Millipore Corp

Follow this and additional works at: http://dc.engconfintl.org/biopoly Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Paul Killian, Ven A. Raman, Jessica Shea, and Mae Santos-Rosa, "Static vs. dynamic extraction – Comparing best practice for Single Use Technology" in "Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications", Ekta Mahajan, Genentech, Inc., USA Gary Lye, University College London, UK Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biopoly/32

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Static vs. Dynamic Extraction – Comparing Best Practice for Single Use Technology

Paul Killian, Ph.D, Ven Raman, Ph.D., Mae Santos-Rosa, Hyesun McNulty, Ph.D., and Jessica Shea

Introduction

Results

The objective of this study is to compare the extractables profile generated from filters when using either (i) Dynamic - Recirculation extraction, (ii) Dynamic - Orbital Shaker extraction, or (iii) Static Soak extraction.

Study Design

This study used Opticap® XLT 10 Capsules, with Gamma Durapore® 0.22 µm media (catalog number KVGLG1TTT1). The filters had an effective filtration surface area (SA) of 0.73 m² (7300 cm²).

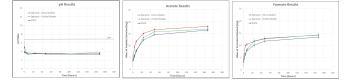
- · All filters were from the same lot.
- · Capsules were gamma irradiated ~45 kGy and extracted within 5 weeks of irradiation
- Capsules were extracted with Milli-Q[®] water at 40°C
- · Samples were collected at: 30 min, 4 hrs, 8 hrs, 24 hrs, 48 hrs, and 168 hrs. • The extracts were analyzed for: pH, small organic acids by ion
- chromatography, total organic carbon (TOC), volatile organic compounds (VOC) by GC/MS, organic compounds by RP-HPLC-UV, and metals by ICP. · Triplicate samples were prepared per time point.

(i) Dynamic - Recirculation

- Capsules and reservoir contained ~2000 mL of water. A flow rate of 250 mL/minute was used to recirculate the water through the filter. SA/V ratio = 3.7 cm² to 1 mL
- · At each sampling point, 170 mL was removed from the system and replaced with 170 mL of fresh water.
- The same three filters were used for all time points.
- Control: An all perfluoroalkoxy (PFA) pump and polytetrafluoroethylene (PTFE) tubing were used to limit system extractables. A system control sample was generated by circulating water through all the same components (except the filter) and aliquots were removed at each time point.

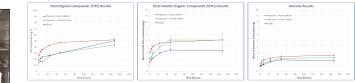
(ii) Dynamic - Orbital Shaker

- Capsules were filled with ~1710 mL of water and extracted horizontally on an orbital shaker (50 rpm). SA/V ratio = 4.3 cm² to 1 mL
- · At each sampling point capsules were drained into a PFA container, homogenized, and aliquots transferred to sample jars for each assay.
- · Control: A solvent blank was stored in a PFA container, and aliquots were removed at each sampling time point.

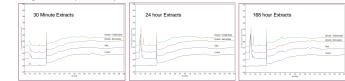

(iii) Static Soak

- The Capsules were filled with ~1650 mL of water and stored vertically in the incubator. SA/V ratio = 4.4 cm² to 1 mL
- · At each sampling point capsules were drained into a PFA container, homogenized, and aliquots transferred to sample jars for each assay.
- Control: A solvent blank was stored in a PFA container, and aliquots were removed at each sampling time point.

Corresponding Author: Paul.Killian@emdmillipore.com


All graphs show the mass of extracted vs time. (Except for pH and RP-HPLC) All graphs show the average of the three replicate samples. (Except for RP-HPLC) The error bars are the standard deviation between the three replicates.

pH, Acetate, and Formate


- > In all samples the pH dropped to about pH 4 due to the generation of acetate and formate, formed as a result of the gamma irradiation.
- Both acetate and formate results have a similar pattern increasing quickly in the first 24 hours. then only slightly more over the next six days.

TOC, Total VOC, and Acetone

- All three graphs show a similar pattern increasing quickly in the first 24 hours, then only slightly more over the next six days.
- > Acetone was the most prominent VOC detected, accounting for half of the Total VOC concentration. Others compounds (not shown) include acetaldehyde, 2-pentanone, and methyl isobutyl ketone.

Organic Compounds by RP-HPLC

- > The chromatographs show only one of the three replicates at each time point.
- > All three extraction techniques generate a similar profile, all increasing with time. (The peaks of interest are from 5-9 minutes.)
- > The recirculation chromatograph peaks are the smallest due to dilution from the higher extraction volume and the addition of fresh solvent at each sampling time point.

Metals

> Only three metals (calcium, magnesium, and sodium) were detected in the extracts

> All three metals were present at the same concentrations, regardless of the extraction technique.

Comparison of the Different Extraction Techniques

The following tables summarize the advantages and disadvantages or each of the three extraction techniques.

Parameter	Dynamic – Recirculation	Dynamic – Orbital Shaker	Static Soak
Extraction Kinetics	Best Most efficient kinetics	Better	Good Least efficient kinetics for the early sample time points.
Sample Throughput	Fair Capable of testing 2 filters per incubator	Better Capable of testing 18 filters per incubator	Best Capable of testing 36 filters per incubator
Data Variability	Best The same three filters were used for all time points	Good Data variable due to individual filters used at each sampling time point.	Good Data variable due to individual filters used at each sampling time point.
Test Samples	Best 3 filters needed for this study	Good 18 filters needed for this study (3 per sample time point)	Good 18 filters needed for this study (3 per sample time point)
Complexity	Fair (i) Most complex to execute. (ii) Least robust procedure with a greater risk of contamination. (iii) Need more controls (solvent and system). (iv) More complex calculations needed to account for mass removed at the earlier sample time points.	Best (i) Easy to execute (ii) Easy to calculate results	Best (i) Easy to execute (ii) Easy to calculate results

Summarv

- lastly static soak. This was most evident in the results from the early sample time points. However, by day 7 all three extraction techniques demonstrated similar concentrations of all compounds detected in the study
- The profile of extractable compounds was identical for each technique.

EMD Millicore and the M loop are registered trademarks of Merck KGaA. Darmstadt. Germany, © 2015 EMD Millicore Corporation. All rights reserved