Engineering Conferences International ECI Digital Archives

Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications

Proceedings

Fall 10-20-2015

What's in The Bag?

Rebecca Olsen DuPont Packaging & Industrial Polymers, rebecca.l.olsen@dupont.com

Diane Hahm DuPont Packaging & Industrial Polymers

Jing Li DuPont Packaging & Industrial Polymers

Follow this and additional works at: http://dc.engconfintl.org/biopoly Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Rebecca Olsen, Diane Hahm, and Jing Li, "What's in The Bag?" in "Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications", Ekta Mahajan, Genentech, Inc., USA Gary Lye, University College London, UK Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biopoly/28

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Dissecting Multilayer Film Structures to Optimize Performance in Single-Use Bioprocessing Bags Rebecca Olsen & Diane Hahm

INTRODUCTION

Traditionally, the biopharmaceutical manufacturing industry has used stainless steel equipment for the production of biopharmaceuticals. More recently, the industry has shifted towards using single-use plastic bags for the production, storage, and transportation of biopharmaceuticals and other fluids necessary for manufacturing. The single-use plastic bags are made from multilayer film.

Outer layer	 Puncture strength Impact strength Tear strength
Tie layer Barrier layer Tie layer	 Barrier to oxygen and water vapor Folding endurance
Contact layer	 Low extractable profile Seal strength Coefficient of friction

Each layer in the multilayer film structure serves a purpose. The contact layer is in direct contact with the contents of the bag and should be a "clean" polymeric material. The contact layer is also the material that is sealed to itself and to fitments during the bag converting process. The barrier layer serves to minimize oxygen and water vapor transmission through the film. The outer layer provides strength and toughness to the film to prevent failures due to puncture and abrasion. The tie layers function as adhesive layers to join the dissimilar materials of the overall structure.

The primary objective of this study is to demonstrate the differences between the extractable profiles of three different contact layer resins. A second objective of this study is to measure the physical properties such as tensile properties, tear strength, and puncture strength of various monolayer blown films. Knowledge of the monolayer film properties enables the design of a more optimized multilayer film structure for a given application.

MATERIALS AND METHODS

The polymer materials used to make the monolayer films for this study are described in Table 1.

Polymer	Composition	Density	Melt Index	Melting Point
		(g/cm ³)	(190°C/2.1 kg)	(°C)
DuPont [™] 20 Series	LDPE	0.92	1.9	108
DPE-20				
Commercially	ULDPE	0.902	1.0	99
available ULDPE				
DuPont TM Elvax®	Ethylene – 18%	0.94	0.7	89
3165	vinyl acetate			
Surlyn® 1857	Zinc ionomer	0.94	4.0	87
Surlyn® 8320	Sodium ionomer	0.95	1.0	70
EVAL TM F171 ¹	32 mol % ethylene	1.19	1.8	183
	vinyl alcohol			
	copolymer			
SoarnoL TM DC3203F ²	32 mol % ethylene	1.19	3.2	183
	vinyl alcohol			
	copolymer			

Table 1. Physical characteristics of polymers in this study

Monolayer nominal 2-mil blown film samples were made for most of the polymers listed in Table 1. The monolayer blown film samples were made on a three-layer 3" Brampton blown film line which includes three 1.25 inch extruders.

The monolayer blown film samples were sent to STERIS Isomedix Services in Libertyville, Illinois for gamma irradiation. The film samples were irradiated to 45.0-60.0 kGy. The average delivered dose was 50 kGy.

The physical properties of the monolayer blown film samples were measured using the appropriate ASTM standard and are listed along with the results.

DuPont Packaging & Industrial Polymers Wilmington, DE

DISSECT THE LAYERS

CONTACT LAYER

The contact layer in a bioprocessing container or reactor is arguably the most critical layer in the whole film because it is in direct contact with the contents of the container.

Extractable Screening

The DuPontTM 20 Series DPE-20, DuPontTM Elvax® 3165 and ULDPE irradiated film samples were sent to Eurofins Lancaster Laboratories, Inc. for extractables screening. The details of the extraction test conditions are described in Table 2. The method used in this study was an abbreviated version of the protocol described by Ding et al³. The methods used to identify and quantify the extractable compounds are methods commonly used in the industry.

	Extraction Condition	Condition Value	
	Test Films	DuPont [™] 20 Series D	PE-20
		Elvax® 3165	
		ULDPE	
	Model Solvents	0.1 M H ₃ PO ₄	
		0.5 N NaOH	
		50:50 Ethanol:Wate	er
	Surface Area of Extract	240 cm^2	
	Piece of Film		
	Solvent Final Volume	40 mL	
	Storage Temperature	40°C	
	Analyzas	Direct injection GC/	MS
	Analyses	Headspace GC/M	
		Direct injection LC/	MS
able 3. Extra	ctable analysis and comp	ound detection	
	DuPont TM 20 Serie	s Elvax® 3165	ULDPE
	DPE-20		
esults from d	irect injection GC/MS an	alysis	
0.1 M H ₃ PC	D ₄ ND	ND	ND
0.5 N NaOI	H ND	ND	1 compound
0.5 N NaOI 50% Ethano	HNDolND	ND 5 compounds	1 compound 13 compounds
0.5 N NaOI 50% Ethanc Results from h	H ND ND eadspace GC/MS analysi	ND 5 compounds s	1 compound 13 compounds
0.5 N NaOl 50% Ethanc Results from h 0.1 M H ₃ PC	I ND ol ND aeadspace GC/MS analysi 04 ND	s ND S ND	1 compound 13 compounds ND
0.5 N NaOl 50% Ethand Results from h $0.1 \text{ M H}_3\text{PC}$ 0.5 N NaOl	I ND ol ND aeadspace GC/MS analysi 04 ND H ND	s ND S ND	1 compound 13 compounds ND ND
0.5 N NaOl 50% Ethano Results from h $0.1 \text{ M H}_3\text{PC}$ 0.5 N NaOl 50% Ethano	I ND ol ND aeadspace GC/MS analysi 04 ND H ND ol ND	ND 5 compounds s ND ND ND ND	1 compound 13 compounds ND ND ND
0.5 N NaOl 50% Ethano Results from h $0.1 \text{ M H}_3\text{PC}$ 0.5 N NaOl 50% Ethano Results from d	I ND ol ND leadspace GC/MS analysi 04 ND H ND ol ND Image: ND Image: ND Image: ND	ND 5 compounds s ND ND ND ND ND IM ⁺ and MM ⁻) analysis	1 compound 13 compounds ND ND ND
0.5 N NaOl 50% Ethand Results from h 0.1 M H ₃ PC 0.5 N NaOl 50% Ethand Results from d 0.1 M H ₃ PC	I ND ol ND leadspace GC/MS analysi 04 ND H ND I ND I ND Image: Second	ND 5 compounds s ND ND ND IM ⁺ and MM ⁻) analysis ND	1 compound 13 compounds ND ND ND ND S ND
0.5 N NaOl 50% Ethano Results from h 0.1 M H_3 PC 0.5 N NaOl 50% Ethano Results from d 0.1 M H_3 PC 0.5 N NaOl	INDolNDleadspace GC/MS analysi04NDINDINDINDINDINDINDINDINDINDINDIND	ND 5 compounds s ND ND ND IM ⁺ and MM ⁻) analysis ND ND	1 compound 13 compounds ND ND ND S ND 8 compounds

Indicates that no compound was detected above the 0.1 µg/mL reporting mint

Seal Strength

In addition to its extractable profile, the heat seal strength of the contact layer material is an important property to measure because it is the layer that is sealed together when the film is converted into bags.

Coefficient of Friction

The coefficient of friction (COF) is an indication of how easily the material can be processed. DuPont[™] 20 Series DPE-20 has low COF without slip or antiblock, unlike other contact materials which require processing aids.

Table 4. Static Coefficient of Friction of Monolayer Films (ASTM D1894)

DuPont TM 20 Series DPE-20	Elvax® 3165	ULDPE
0.34	2.8	0.31

BARRIER LAYER

The barrier layer in a multilayer film structure minimizes oxygen and water vapor transmission through the film. The preferred barrier material for multilayer film used in the single use bioprocessing industry is ethylene vinyl alcohol (EVOH). EVOH is often the most brittle material in the film structure and most vulnerable to breakage from folding. The MIT Flex Test is a measurement of the endurance or strength of a film after repeated flexing.

Table 5. Oxygen Permeability at 20°C and 65% RH (cm³·mil/100in²·day·atm)

EVALTM F171	SoarnoL TM DC3203F
0.020^{1}	0.015^{2}

Table 6. MIT Flex Results of EVOH film (ASTM D2176)

	EVALTM F171	SoarnoL TM DC3203F
Average Number of Cycles	6,976	15,514

OUTER LAYER

It is important for the layers outside of the barrier layer to provide additional strength and toughness. Elmendorf tear, Spencer impact, and needle puncture were measured on three different monolayer films.

Table 7. Elmendorf Tear Strength, g/mil (ASTM D1922)

ULDPE	Surlyn® 8320	Surlyn® 1857
390	150	200

Table 8. Spencer Impact, g/mil (ASTM D3420)

ULDPE	Surlyn® 8320	Surlyn® 1857
1,830	1,230	810

TIE LAYER

Tie layer resins help join the dissimilar materials together in a multilayer structure. DuPont[™] Bynel® is a broad portfolio of coextrudable tie layer resins.

Understanding the properties of the materials in the individual layers allows one to design a more optimized multilayer film structure.

A computer model designed by DuPont helps predict the bending stiffness of a multilayer film⁴. The inputs for the model include layer thickness and modulus of each material. The output of the model is a stiffness factor that can be used for comparison of different multilayer structures.

Based on the results of the monolayer film property testing, multilayer film structures were entered into the model:

1857.

Although the model predicts that the 7-layer structure will be more flexible than the 5-layer structure, a next step would be to produce the film and measure physical properties such as puncture strength, tear strength, and the typical tensile properties.

http://www.evalevoh.com/media/62094/data_sheet_for_f171__may_2012_.pdf 2. http://www.soarus.com/soarnol/Data/TDS/TDS_DC3203.pdf

- 2014.

We would like to acknowledge STERIS Isomedix Services for their gamma irradiation services and Eurofins Lancaster Laboratories for conducting the extractable screening and analysis.

If you have any questions or would like to request additional information, please contact:

rebecca.l.olsen@dupont.com Rebecca Olsen Diane Hahm diane.m.hahm@dupont.com

SCOUTING MULTILAYER FILM

An optimized film structure would include a contact material that has a low extractable profile, such as DuPont[™] 20 Series DPE-20, a more flexible EVOH such as SoarnoL[™] DC3203F, and other tough layers such as Surlyn®

REFERENCES

3. Ding W., et al., "Standardized Extractables Testing Protocol for Single-Use Systems in Biomanufacturing," *Pharmaceutical Engineering*, Vol. 35, No. 6,

DuPont Packaging Resins. 2009. The Influence of Sealant Modulus on the Bending Stiffness of Multilayer Films. Retrieved from http://www2.dupont.com/Packaging_Resins/en_US/assets/downloads/white_ papers/Sealant_Modulus_White_Paper.pdf

ACKNOWLEDGEMENTS

CONTACT

302-892-1057 302-999-5269