Engineering Conferences International ECI Digital Archives

Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications

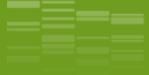
Proceedings

Fall 10-19-2015

Thermodynamics of migration in polymers: Can contamination from materials in contact be predicted, controlled and possibly avoided?

Olivier Vitrac INRA

Phuong Nguyen

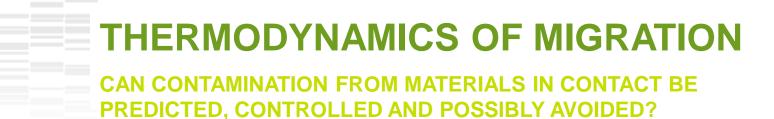

Follow this and additional works at: http://dc.engconfintl.org/biopoly Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

[1] AIChE Journal 2005, 51 (4), 1080-1095. [2] AIChE Journal 2013, 59 (4), 1183-1212. [3] J. Chem. Phys. 2010, 132(19): 194902
[4] Crit. Rev. Food Sci. Nutrition 2015, doi: 10.1080/10408398.2013.849654. [5] I&EC 2009, 48 (11), 5285-5301. [6] I&EC 2010, 49 (16), 7263-7280. [7] Int. J. Chem. React. Eng. 2010, 8. [8] J. Polym. Sci. Part B: Polym. Phys. 2014, 52 (19), 1252-1258. [9]
Nguyen, P.-M.; Guiga, W.; Dkhissi, A.; Vitrac, O., submitted to I&EC. [10] Macromol. 2013, 46 (3), 874-888. [11] J. Appl. Polym. Sci. 2006, 101 (4), 2167-2186. [12] J. Appl. Polym. Sci. 2010, DOI: 10.1002/app.32950. [13] I&EC 2015, 54 (10), 2667-2681.

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Single-Use Technologies: Bridging Polymer Science to Biotechnology Applications by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Single-Use Technologies Bridging Polymer Science to Biotechnology Applications Oct 18-21, 2015 - Leesburg, VA, USA


THERMODYNAMICS OF MIGRATION IN POLYMERS

Olivier Vitrac, Mai Nguyen olivier.vitrac@agroparistech.fr

French National Institute for Agricultural Research UMR 1145 Food Processing and Engineering Group Interactions between Materials and Media in Contact AgroParisTech, 91300 Massy, France http://modmol.agroparistech.fr , http://www.inra.fr

olivier.vitrac@agroparistech.fr / UMR 1145 Food Processing and Engineering

✤_01 WHAT IS MIGRATION?

- ✤_02 DIFFUSION AND DIFFUSION COEFFICIENTS
- **♦ _ 03 CHEMICAL AFFINITY... MOLECULAR PREDICTIONS**
- ✤_04 PREVENTIVE APPROACHES
- ✤_05 COMPLEMENTARY TOOLS AND PROSPECTS

01

WHAT IS MIGRATION?

DIFFUSION SORPTION COUPLED MASS TRANSFER

olivier.vitrac@agroparistech.fr / UMR 1145 Food Processing and Engineering

CONTROVERSY ON THE SAFETY OF PACKAGING MATERIALS

SPECIAL REPORT

Time, 2010, April 12, 30-36. (7 pages !)

Matisse Revisited

Understanding His Genius

Fallen Here

AU.S. Sole

Environment: How Dangerous Is Plastic?

The Perils Of Plastic

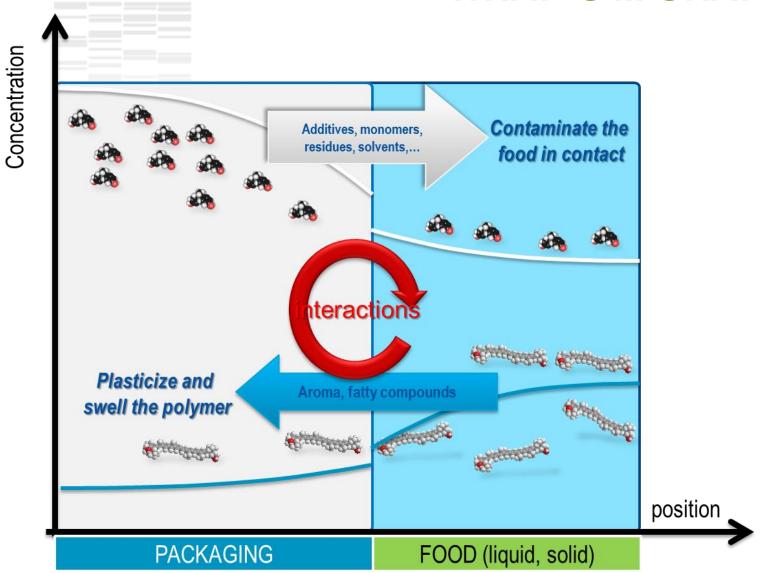
Chemicals in plastics and other products seem harmless, but mounting evidence links them to health problems and Washington lacks the power to protect us

Э

Inside Steve's Pad

Environment:

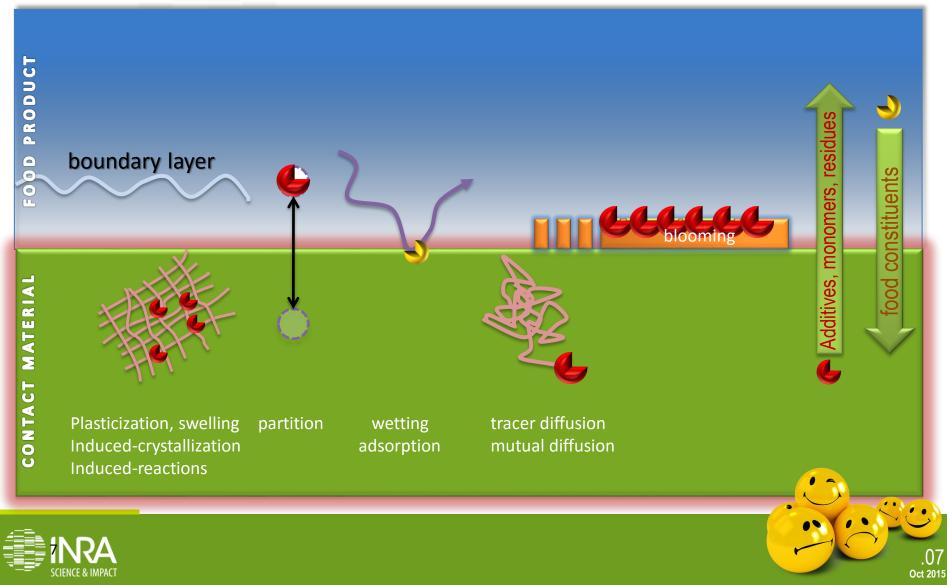
How Dangerous Is Plastic? Greek Drama:


The Challenge

For Papandreou

How Jobs works by Stephen Fry The tale of the tablet by Lev Grossn

The tale of the tablet with



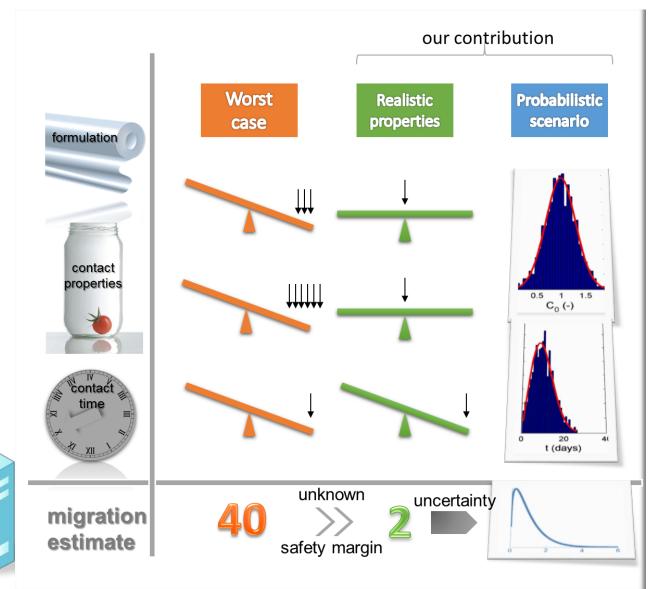
MIGRATION ISSUES

= VARIOUS CROSSED MASS TRANSFER FROM THE MATERIAL AND THE MEDIUM IN CONTACT

MIGRATION MODELING AUTHORIZED/RECOGNIZED IN EU, US, China

At each stage of manufacture, supporting documentation, substantiating the declaration of compliance, should be kept available for the enforcement authorities. Such demonstration of compliance July be based on migration testing. As migration testing is complex, costly and time consuming it should be admissible that compliance can be demonstrated also by calculations, including modelling, other analysis, and scientific evidence or reasoning if these render results which are at least as severe as the migration testing. Test results should be regarded as valid as long as formulations and processing conditions remain constant as part of a quality assurance system.

[...]the migration potential can be calculated based on the residual content of the substance in the material or article applying generally recognised diffusion models based on scientific evidence that are constructed such as to overestimate real migration.



olivier.vitrac@agroparistech.fr Oct 2015

HOW TO OVERESTIMATE MIGRATION

use a tier approach

.09

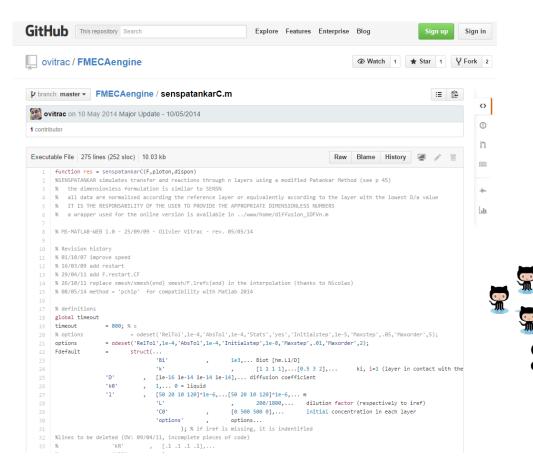
ALL SOFTWARE ARE BUILT ON SIMILAR ASSUMPTIONS

My Informatio	n	Ar	chived simulations or templates
y user: demouser (change user) y project: common (change project) y database: common2013a.sfpp3.databa y Application: Diffusion_1DFV2n (change a RA\SFPP3 - 2013-04-18 22:03:53		geometry form Import a concentra Concentration pr Clear all properties form reset	from a previous result file in the current form mulation contact conditions transport prop. all ation profile ofile s in the current form ata: Migrants (M,SML) Transport Properties
Contact conditions	Layer select	or > 1	Нер
L_FP 100 m³F·m-³P import V_F cm ^a ·	✓ Layer 1 I_P 300 µm ▼ rho_P 1 %g·m³ or g·cm³ K_F/P 0.1 D_P 1e-015 m2.s ⁻¹ ▼ Conc. 50 ppm	import import T	Acetaldehyde Name: Acetaldehyde (Acetic aldehyde;Ethanal;Ethyl aldehyde;CH3CH0;Acetaldehyd;Aldehyde acetique;Aldeide acetica;NCI-C563) CAS: 75-07-0 REF: 10060 InChIKey: IKHGUXGNUITLKF-UHFFFAOYSA-N Formula: C2H40 M: 44.053 g/mol SML: 6 ppm EFSA: Group TDI = 0.1 mg/kg b.w. (calculated as acetaldehyde (including 10060 and 23920) Toxicity profiles similar to methaldehyde. A 2- year oral rat study and a 3-generation oral rat study including teratogenicity with methamethaldehide. The reports on nasal carcinogenicity after inhalation were considered without relevance for effects from oral intake of smaller doses, (adopted at 113rd SCF meeting)(17-18 September 1998) http://europa.eu.int/comm/food/fs/sc/scf/out 16 en.html FU Regulation: +Positive 1 ist
Save result as:		cceptable threshol pecific migration lir	

.010

Oct 2015

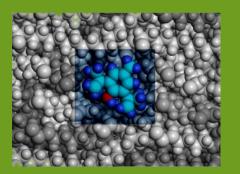
 R

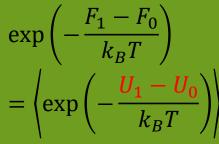

SCIENCE & IMPACT

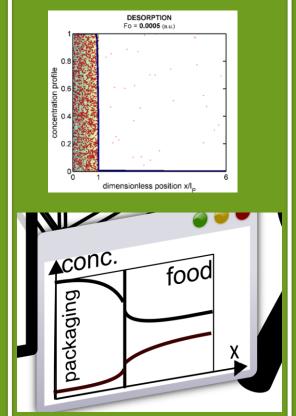
New trends: OPEN-SOURCE codes

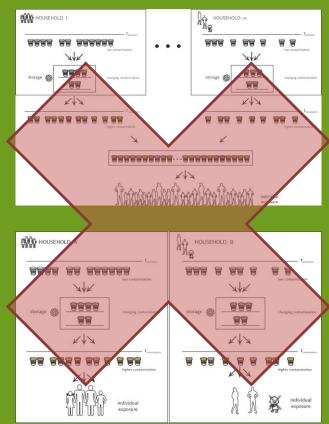
https://github.com/ovitrac/FMECAengine

ovitrac / FMECAengin	e		@ Watch 1
MECA software developed in th ttp://modmol.agroparistech.fr/SI		oject SafeFoodPack Design	
3 61 commits	1 branch	% 0 releases	1 contributor
th P branch master - FMEC	Aengine / +		
fix for load_chemspider when it used w	ithout any existing cache		
ovitrac authored 4 days ago			latest commit e33540c651 🖺
ill examples	monolayer example upda	to	4 years ago
production	production examples, plle	ease change paths to match yours	4 years ago
Dfuller.m	Major Update - 10/05/201	4	11 months ago
Dhelmroth m	Major Update - 10/05/201	4	11 months ago
Dlimm.m	Major Update - 10/05/201	4	11 months ago
Dpiringer.m	FMECAengine 0.51 (majo	or update) - though not fully tested	5 days ago
FMECADfuller m	FMECAengine 0.51 (majo	ar update) - though not fully tested	5 days ago
FMECADpiringer.m		or update) - though not fully tested	5 days ago
E FMECAKaiP.m	FMECAengine 0.51 (majo	5 days ago	
FMECAengine_backup_WSLP	FMECAengine 0.51 (majo	5 days ago	
FMECAgoplymer m		or update) - though not fully tested	5 days ago
FMECAkair m	FMECAengine 0.51 (majo	5 days ago	
FMECApdensity m	FMECAengine 0.51 (majo	5 days ago	
FMECAunit m			
E FMECAvp.m		or update) - though not fully tested	5 days ago
		or update) - though not fully tested	5 days ago
MatchingClosingSymbol m	release v0.45		4 years ago
ModifiedGrainMethod m		ar update) - though not fully tested	5 days ago
README	first commit		4 years ago
🖹 addax m	additional functions to im		3 years ago
addzpłotpub m	additional functions to im	prove/simplify plots	3 years ago
ergcheck m	publishing update		3 years ago
🖹 argpad.m	minor revisions and addit	ions	11 months ago
arrows.m	Major Update - 10/05/201	4	11 months ago
autoprefetch m	Major Update - 10/05/201	4	11 months ago
autoprojectname.m	Major Update - 10/05/201	4	11 months ago
B bordertext.m	Major Update - 10/05/201	4	11 months ago
B boundedline.m	Major Update - 10/05/201	4	11 months ago
Duildmarkov.m	release v0.45		4 years ago
bykeywords.m	FMECAengine 0.51 (majo	or update) - though not fully tested	5 days ago
catstruct.m	release v0.45		4 years ago
Corewer m	minor revisions and addit	ions	11 months ago
celicmp m	release v0.45		4 years ago
checkCAS m	mlease v0.45		4 years ago
Checktoolboxinstall m		or update) - though not fully tested	5 days ago
		,	



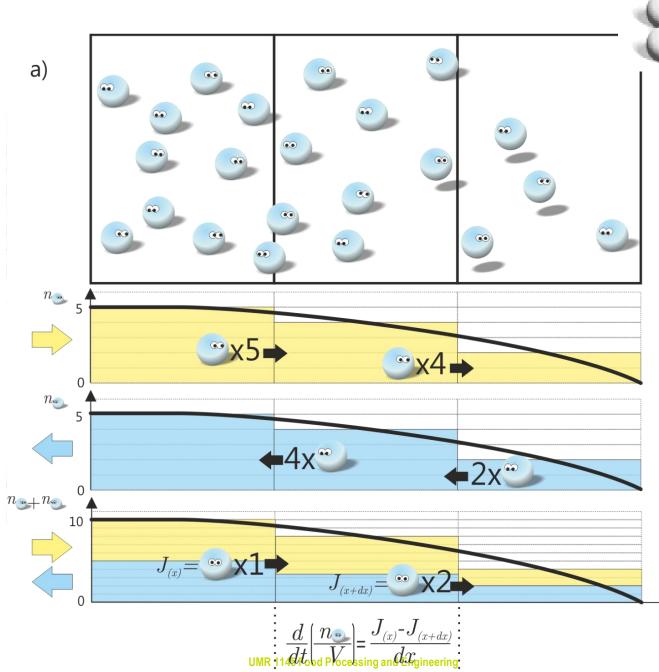

Probabilistic (equilibrium)


Probablistic/deterministic


Probabilistic (out of equilibrium)

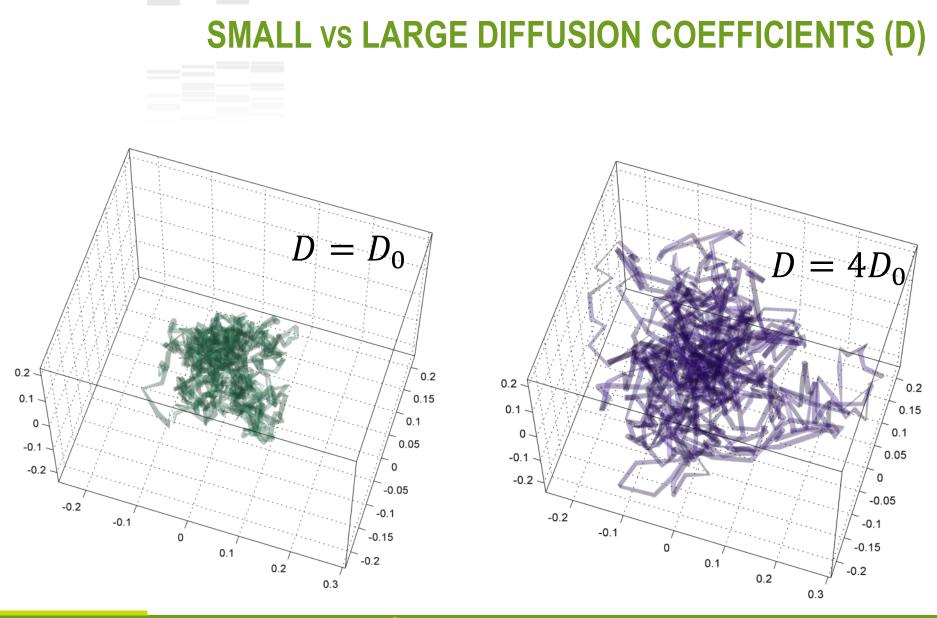
Free energy perturbation

SCALE


DIFFUSION IN POLYMERS

PREDICTING DIFFUSION COEFFICIENTS

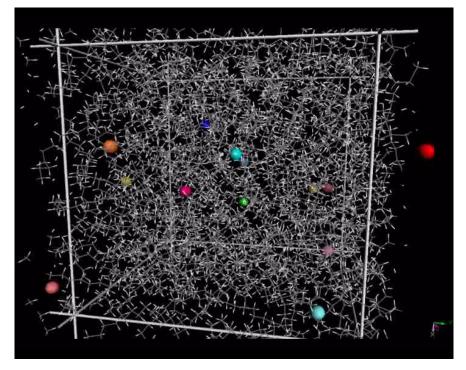
Fang X, Vitrac O. *Crit. Rev. Food Sci. Nutr.* (2014). DOI 10.1080/10408398.2013.849654 Fang X, et al.. *Macromolecules* (2013) **46** 874-888 Durand M *et al. J. Chem. Phys.* (2010) **132** (19), 194902 Vitrac O., Hayert M., *Chem. Eng. Sci.* (2007) **62** (9), 2503–2521 Vitrac et al. *J. Appl. Polym Sci.* (2006), **101** 2167-2186



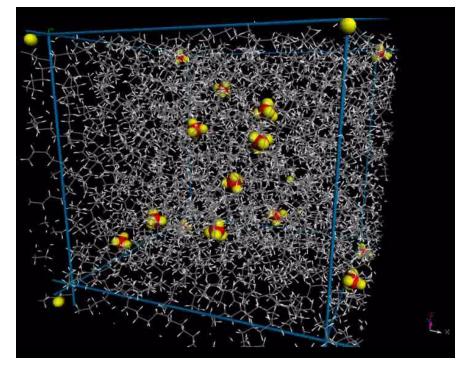
Molecules are represented as jumping beads. They have equal probabilities to hop to left and right directions.

The direction of the next hop at microscopic scale is indicated by the direction towards beads are staring.

x



 $\mathbf{D} \approx \frac{1}{6} \frac{\partial}{\partial t} \langle \left(\mathbf{x}_{CM}(t) - \mathbf{x}_{CM}(0) \right)^2 \rangle$


.015 Oct 2015

DIFFUSION IN POLYETHYLENE (0.5 NS SIMULATION, T=298 K)

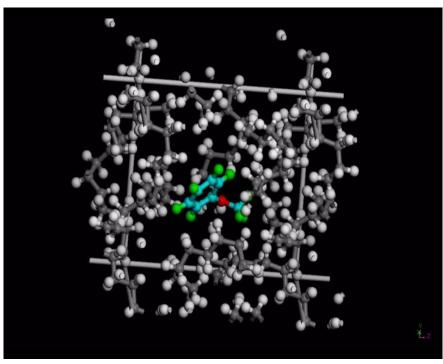
10 molecules of helium

10 molecules of methane

21 /04 / 2015

 $\mathbf{D} \approx \frac{1}{6} \frac{\partial}{\partial t} \langle \left(\mathbf{x}_{CM}(t) - \mathbf{x}_{CM}(0) \right)^2 \rangle$

SCALING D WITH SOLUTE SIZE STIFF DIFFUSANTS



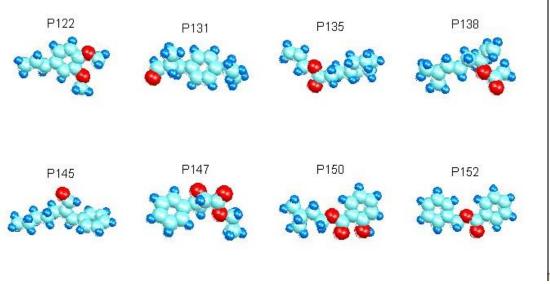
From: A. R. Berens, Pure Appl. Chem., 1981, 53, 365

DIFFUSION OF ANISOLE IN POLYETHYLENE (T=298 K)

0.5 ns at 298 K (details)

20 ns full trajectory

QSPR-MS version 1.0


Molecule: P161 "2-Hydroxy-4-methoxybenzophenone (Chimassorb 90)" CAS# 131-57-7

Polymer: LDPE 23°C

class size: 11

Similar 3D structures for **D** prediction

(pruning level: 20)

P96

P161

P159

©2004 INRA\Olivier Vitrac.

List of molecules in the current class

code	formula	M g.mol-1	CAS #	chemical name	
P122	C11 H14 O2	178	93-16-3	2-Methoxy-4-propenylanisol (Methylisoeugenol)	
P131	C13 H18 O1	190	103-95-7	2-Methyl-3-(4-isopropyl)phenylpropanal (Cyclamen aldehyde)	
P135	C12 H20 O2	196	2705-87-5	Ally1-3-cyclohexy1propionate	
P138	C12 H20 O2	196	115-95-7	3,7-Dimethyl-1,6-octadien-3-ylacetate (Linalylacetate)	
P145	C14 H18 O1	202	122-40-7	Amylcinnamicaldehyde or 2-Phenylmethylene-heptanal	
P1 47	C12 H14 O3	206	77-83-8	3-Methyl-3-phenylglycidate (Aldehyde C16)	
P150	C12 H16 O3	208	NaN	Iso-amylsalicilate	
P152	C14 H12 O2	212	120-51-4	Benzylbenzoate	
P159	C12 H14 O4	222	84-66-2	Diethylphthalate (DEP)	
P161	C14 H12 O3	228	131-57-7	2-Hydroxy-4-methoxybenzophenone (Chimassorb 90)	
P96	C10 H20 O1	156	106-22-9	3,7-Dimethyl-6-octen-1-ol (Citronellol)	

summarized 3D molecular information

prop 3D		median value	
M	156	202	228
VdW volume	180	206	217
Gyration radius	3.54	3.9	4.11
Inertial along z	261	383	449
Inertial along x	28.2	61.9	103
Section xy	48.4	65.1	76.8
Section yz	23.1	30.9	75.4
Dipolar moment	1.23	2.99	4.2
Flexion	2.59	4.46	6.24

D <u>robust</u> statistics

	stand. dev. m2.s-1			Dmed m2.s-1	
2.24e-013	1.54e-013	12	1.2e-013	2.3e-013	7e-013

D robust statistics

	stand. dev. m2.s-1				
2.24e-013	1.54e-013	12	1.2e-013	2.3e-013	7e-013

Local and temporary trapping of additive between polymer segments

Additive translation controlled by the relaxation of polymer itself and by the rate of creation of free volumes.

...

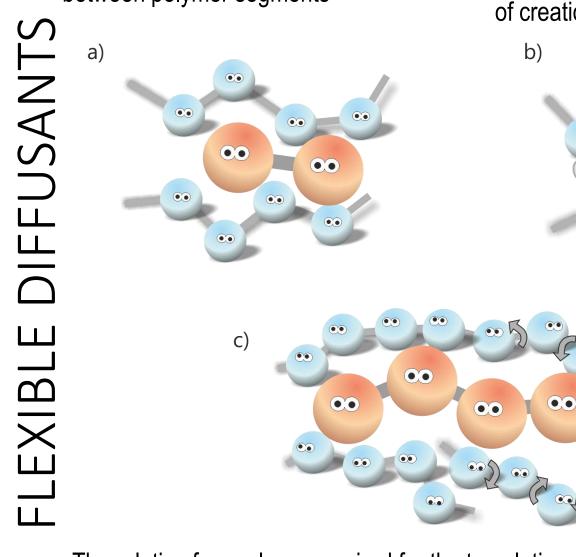
00

steric

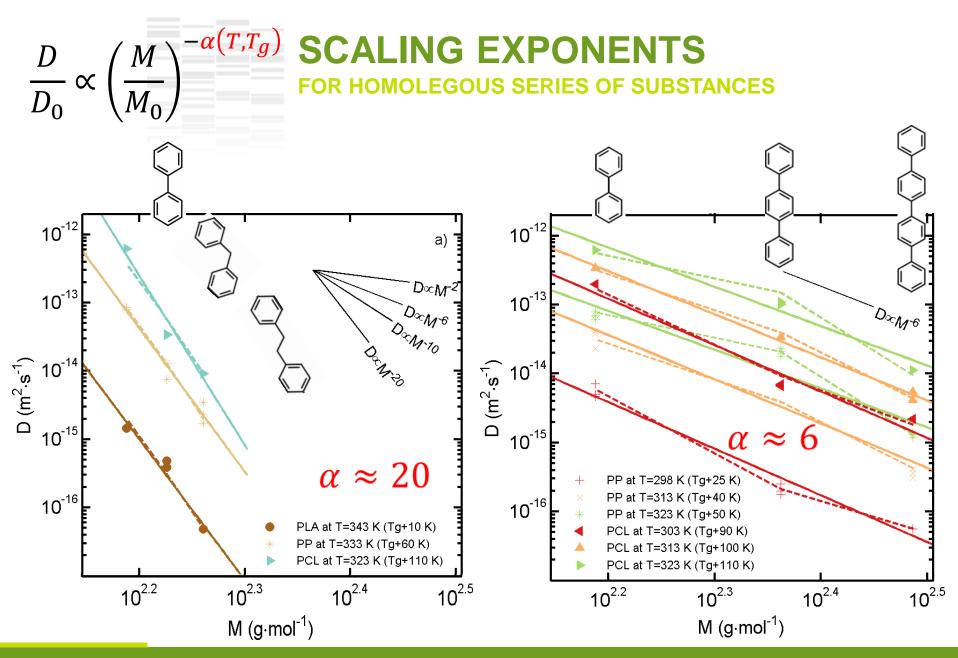
volume

00

...


...

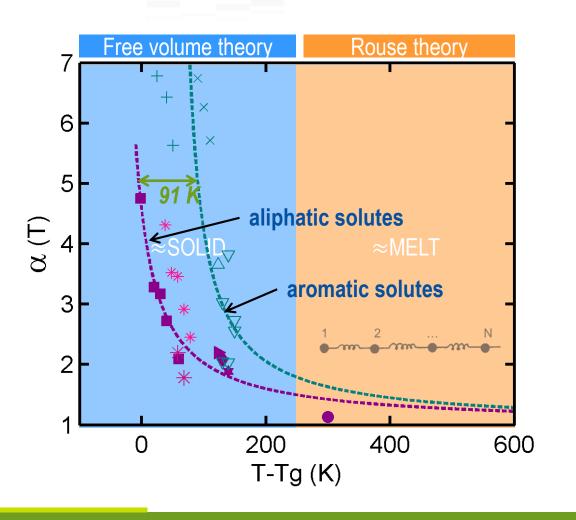
...

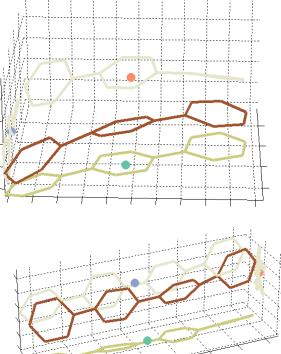

Coo

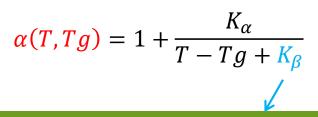
pocket of

free volume

The relative free volume required for the translation of large additives is smaller as displacements of atoms/patterns are more likely not to be correlated together.






Macromolecules 2013, 46(3), 874-888

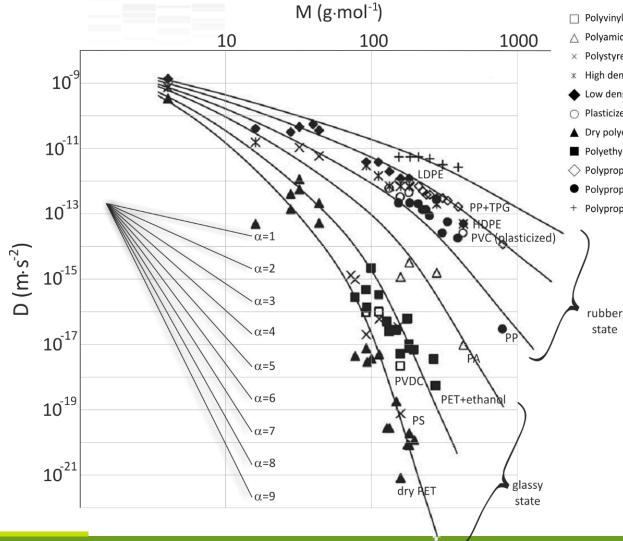
$\frac{D}{D_0} \propto \left(\frac{M}{M_0}\right)^{-\alpha(T,T_g)} \frac{SCALING EXPONENTS}{FOR HOMOLEGOUS SERIES OF SUBSTANCES}$

Blob Shape/size

.022 Oct 2015

Macromolecules 2013, 46(3), 874-888

Formal equivalences between FVT and scaling laws


Rubber polymers: $T > T_g$

	Scaling law (Eq. (19))	Free-volume theory (Eq. (22))
Relative diffusant effects	$\ln\!\left(rac{M}{M_0} ight)$	$0.24(\xi - \xi_0)$
Scaling exponent $\alpha(T, Tg)$	$1 + \frac{K_{\alpha}}{T - T_g + K_{\beta}}$	$0.24 \frac{\gamma}{K_{12}} \frac{\hat{V}_{P}^{*}}{K_{22} + T - T_{g}}$ K_{12}, K_{22} are polymer free- volume parameters.
Relative activation energy $Ea(M,T) - Ea(M_0,T) =$ $Ea(\xi,T) - Ea(\xi_0,T) =$ $\frac{\partial \ln \frac{D(M,T)}{D(M_0,T)}}{\partial 1/T} =$	$\mathbf{K}_{\alpha} \frac{RT^2}{\left(T - T_g + \mathbf{K}_{\beta}\right)^2} \ln \frac{M}{M_0}$	$\underbrace{\frac{E^{*}(\xi) - E^{*}(\xi_{0})}{J_{0}}}_{+(\xi - \xi_{0})} \frac{\gamma \overline{V}_{P}^{*}}{K_{12}} \frac{RT^{2}}{(K_{22} + T - T_{g})^{2}}$

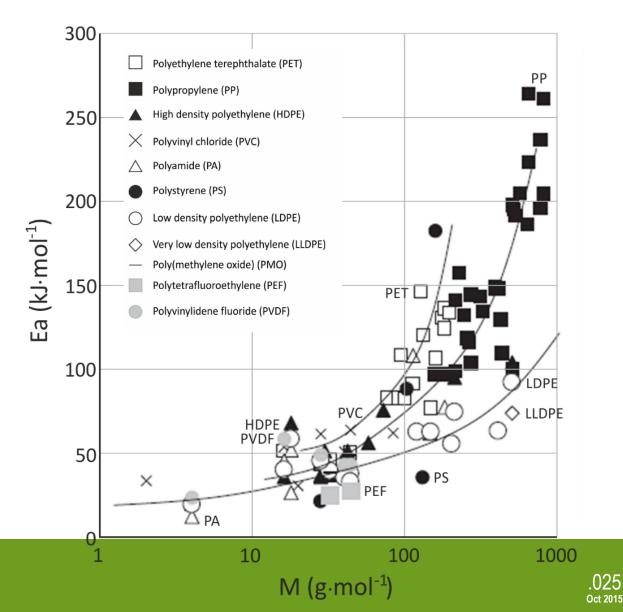
SCALING EXPONENTS

FOR VARIOUS POLYMERS

- Polyvinylidene chloride (PVDC) at 50% RH
- △ Polyamide (PA)
- × Polystyrene (PS)
- * High density Polyethylene pHDPE)
- Low density polyethylene (LDPE)
- Plasticized polyvinyl chloride (PVC)
- Dry polyethylene terephthalate (PET or PETE)
- Polyethylene terephthalate (PET) in contact with ethanol
- Polypropylene (PP) in contact with glyceryl tripelargonate
- Polypropylene (PP) at 40°C
- + Polypropylene (PP) at 70°C

http://www.tandfonline.com/doi/full/10.1080/10408398.2013.849654

Crit. Rev. Food Sci. Nut. 2015 (Fang & Vitrac)



ACTIVATION ENERGY

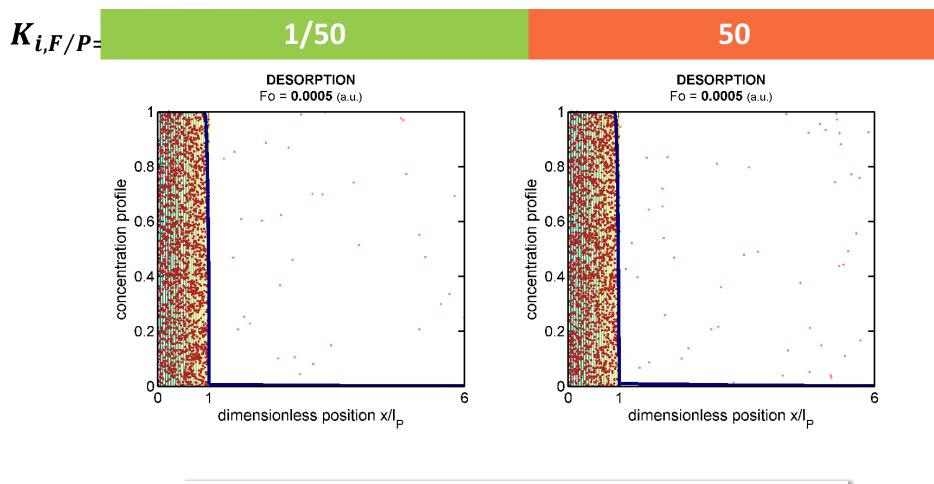
VARIOUS DIFFUSANTS IN VARIOUS POLYMERS

$$Ea(M) \approx Ea(M_0) + ln(M/M_0)$$

Crit. Rev. Food Sci. Nut. 2015 (Fang & Vitrac) http://www.tandfonline.com/doi/full/10. 1080/10408398.2013.849654

03 CHEMICAL AFFINITY PARTITION COEFFICIENTS HEAT OF SORPTION

HOW MOLECULAR MODELING CAN PREDICT THEM?


Industrial & Engineering Chemistry Research. **2009**;48(11):5285-5301. Int. J. Chem. React. Eng. **2010**;8. Industrial & Engineering Chemistry Research. **2010**;49(16):7263-728 Polym. Sci. Part B: Polymer Physics, **2014**, 52(19), 1252–1258 Nguyen P-M, Guiga W, Dkhissi A, Vitrac O. *submitted to I&EC*. **2015**.

EFFECT OF PARTITION COEFFICIENT ON MIGRATION

50 times for chemical affinity for P 50 times for chemical affinity for F

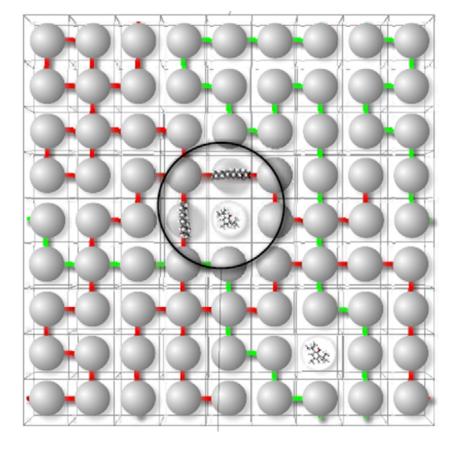
.027 Oct 2015

$$K_{i,F/P} = \frac{C_{i,F}^{eq}}{C_{i,P}^{eq}} = \frac{1}{1 - crystallinity} \frac{\gamma_{i,P_{amorphous}}^{v}}{\gamma_{i,F}^{v}}$$

olivier.vitrac@agroparistech.fr Oct 2015

MANY METHODS AVAILABLE

Class	Models
Group contribution	UNIQUAC, UNIFAC, NRTL
Associative model	SAFT, PRISM Optimized for polar and liquid phase (De Anda et al Pol. Eng. & Sci., 2011)
Molecular modelling at atomistic scale	Explicit representation <u>of</u> entangled chains
	Representation of <u>polymer</u> <u>chains without entanglement</u>



OFF-LATTICE FLORY-HUGGINS FORMULATION OF EXCESS CHEMICAL POTENTIALS IN **BINARY BLEND-VOID SYSTEMS**

Chemical potential (definition of J. Williard Gibbs)


$$\mu_{i,k} = \left(\frac{\partial G_{i+k}}{\partial n_i}\right)_{P,T,i\neq j} = \mu_i^0 + RT \ln a_i = \mu_i^0 + RT \ln \phi_i + RT \ln \gamma_{i,k}^v = \mu_i^0 + \mu_i^{id} + \mu_{i,k}^{excess}$$

Flory expression at infinite dilution in *k*=P or in *k*=F

$$\frac{\left\{\mu_{i,k}^{excess}\right\}_{k=P,F}}{k_B \cdot T} = \ln \gamma_{i,k}^{\nu} = \left(1 - \frac{1}{r_k}\right) \cdot \phi_k + \chi_{i,k} \cdot \phi_k^2 \approx \left(1 - \frac{1}{r_k}\right) + \chi_{i,k}$$

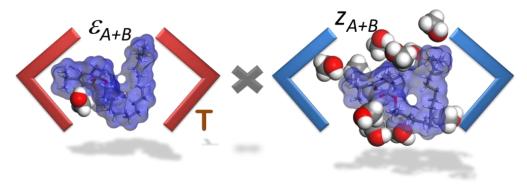
 $\begin{aligned} &2k_BT\chi_{i,k}\\ &=\langle h_{i+k}\rangle_T+\langle h_{k+i}\rangle_T-\langle h_{k+k}\rangle_T-\langle h_{i+i}\rangle_T \end{aligned}$

Bawendi et al., *J. Chem Phys*. 1986; 1987; 1988

Gillet et al., *I&EC*, 2009; 2010 ; Vitrac and Gilet, *Int. J. Chem. Reactor Eng.* 2010

olivier.vitrac@agroparistech.fr Oct 2015

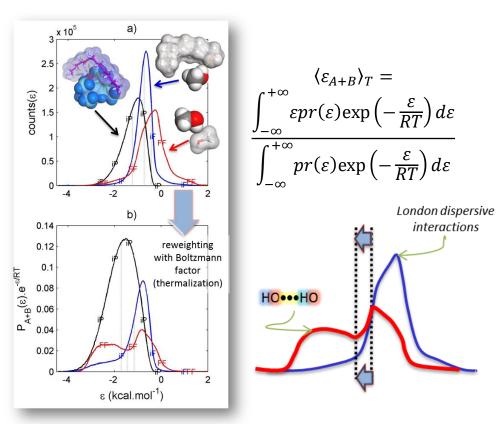
$$\ln(\frac{\gamma_{i,k}^{v}}{k}) = \left(1 - \frac{1}{r_{k}}\right)\phi_{k} + \chi_{i,k}\phi_{k}^{2} \quad \mathsf{F}$$

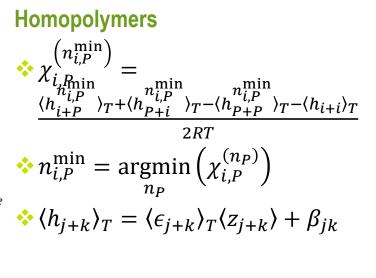

$$k = P, F$$

FLORY HUGGINS APPROXIMATION AT ATOMISTIC SCALE

IDEALIZED POLYMER CHAINS (k = P)

 $2k_B T \frac{\chi_{i,k}}{\chi_{i,k}} = \langle h_{i+k} \rangle_T + \langle h_{k+i} \rangle_T$ $- \langle h_{k+k} \rangle_T - \langle h_{i+i} \rangle_T$

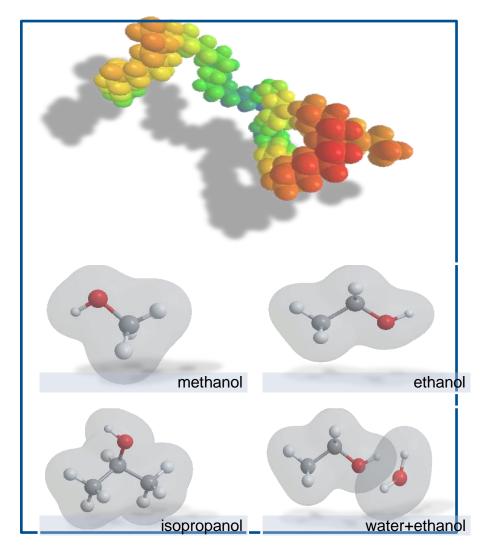

EXCESS ENTHALPIES ARE CALCULATED FROM SIMPLE A MIXING RULE OF PAIR CONTACT ENERGIES

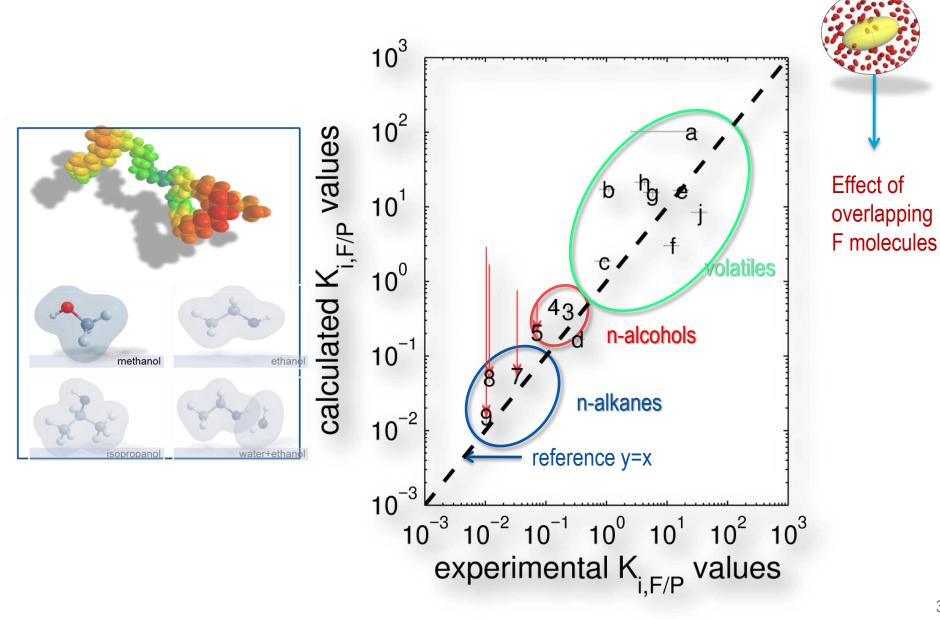

 $\langle h_{A+B} \rangle_T = \langle \varepsilon_{A+B} Z_{A+B} \rangle_T \approx \langle \varepsilon_{A+B} \rangle_T \langle Z_{A+B} \rangle$

DETAILS OF THE ENERGY SAMPLING PROCEDURE

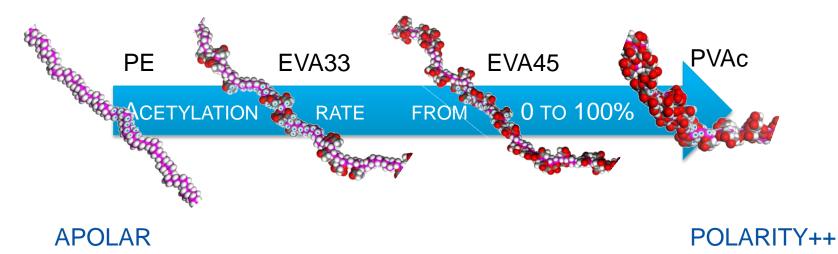
Pair contact energies

Excess enthalpies


.031


FIRST COMPARISONS BETWEEN DIRECT CALUCLATIONS AND EXPERIMENTS (no fit) – 45 SOLUTES

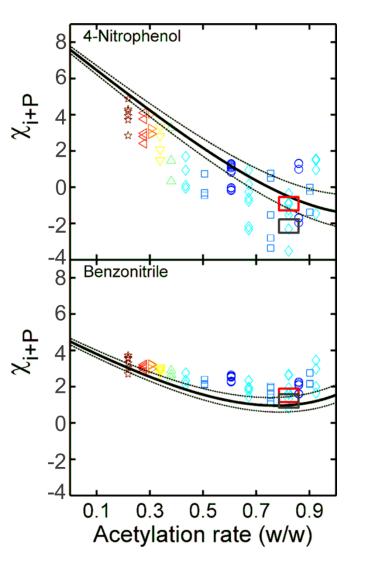
Polyethylene in contact with



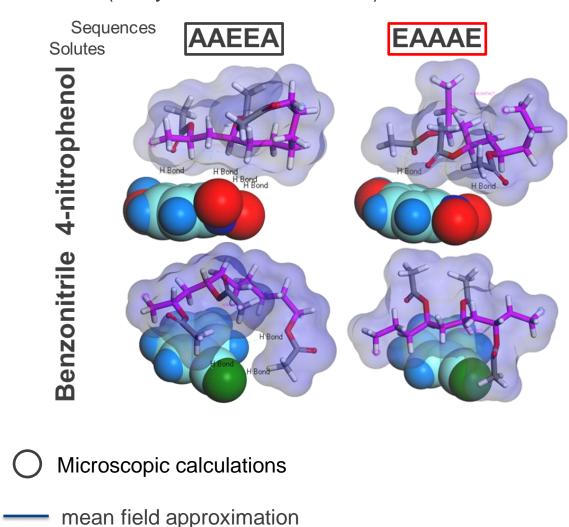
Alkanes	Alcohols	Volatiles	Plastics additives
decane	decanol	camphor	BHT
undecane	undecanol	diphenyl oxide	chimassorb 81
dodecane	dodecanol	diphenylmethane	Erucamide
tridecane	tridecanol	d-limonene	Irganox 1076
tetradecane	tetradecanol	dl-menthol	Irganox 1035
pentadecane	pentadecanol	eugenol	Irganox 245
hexadecane	hexadecanol	isoamyl acetate	Irgafos 168
heptadecane	heptadecanol	linalyl acetate	Irganox 3114
octadecane	octadecanol	phenylethyl alcohol	Irganox ps802
nonadecane	nonadecanol		stearic acid
eicosane	eicosanol		Tinuvin 326
docosane			
tetracosane			
octacosane			

METHANOL-POLYETHYLNE PARTITIONING

EXTENSION TO COPOLYMERS (ethylene vinyl acetate)

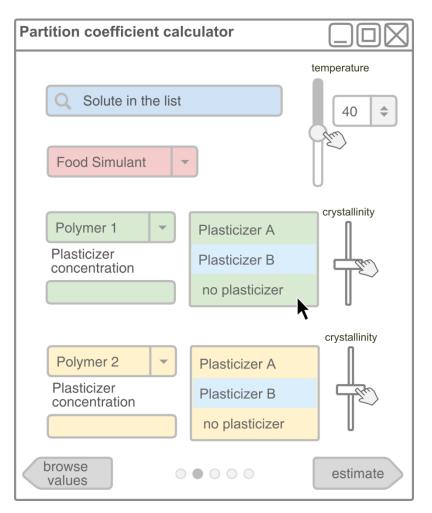

Mean field approximation (Flory-Huggins ternary : *i* + PE + PVAc) $\chi_{i,EVA}^{(w_{VA})} = \chi_{i,PVAc} \phi_{VA}^{(w_{VA})} + \chi_{i,PE} \left(1 - \phi_{VA}^{(w_{VA})}\right) - \chi_{PVAc,PE} \phi_{VA}^{(w_{VA})} \left(1 - \phi_{VA}^{(w_{VA})}\right)$

Microscopic approach (binary : *i* + copolymer) : sampling of all possible isomers



COMPARISON BETWEEN THE MICROSCOPIC AND MEAN FIELD APPROXIMATION

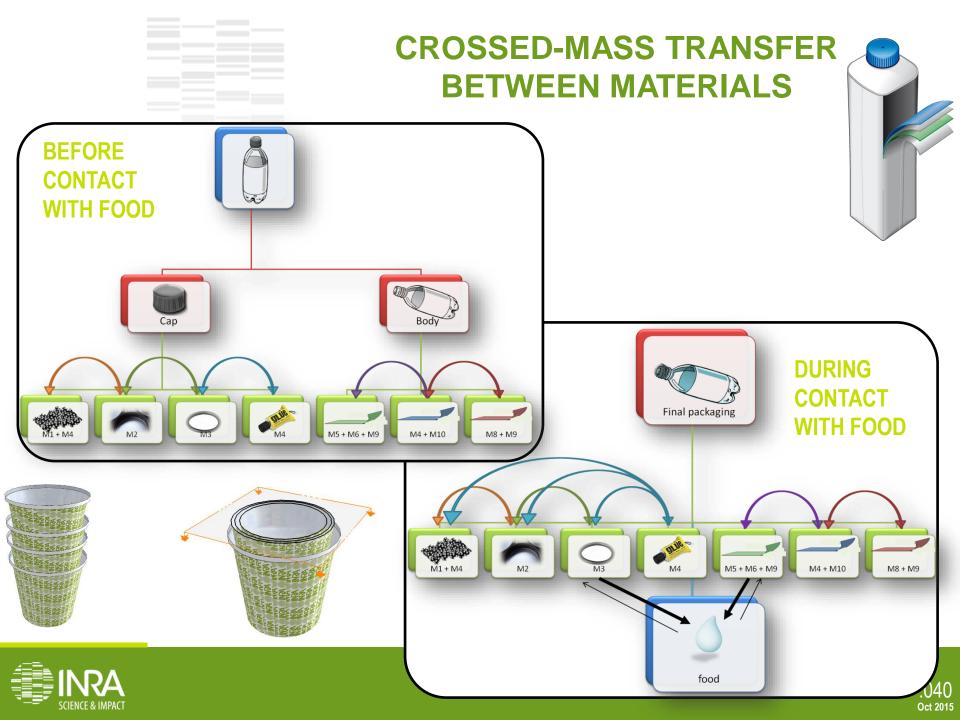
Effect of acetylation rate on χ


Configurations of minimal energies : n = 5(acetylation rate w/w = 0.82)

MOLECULAR RESULTS INTEGRATED WITHIN A "SMALL" SOFTWARE

Databases of results calculated at molecular scale contact contact contact energy energy energy i+P i+j i+F contact contact contact contact energy energy energy energy i+i P+P F+F j+j coold coold coold -nation -nation -nation i+P i+F i+j coold coold cooldi cool di -nation -nation -nation -nation i+i P+P j+j F+F entropic XML databases contribution which can be ri,F easily edited. updated

Small "real-time" software


PREVENTIVE APPROACHES OF THE CONTAMINATION

FMECA APPROACHES

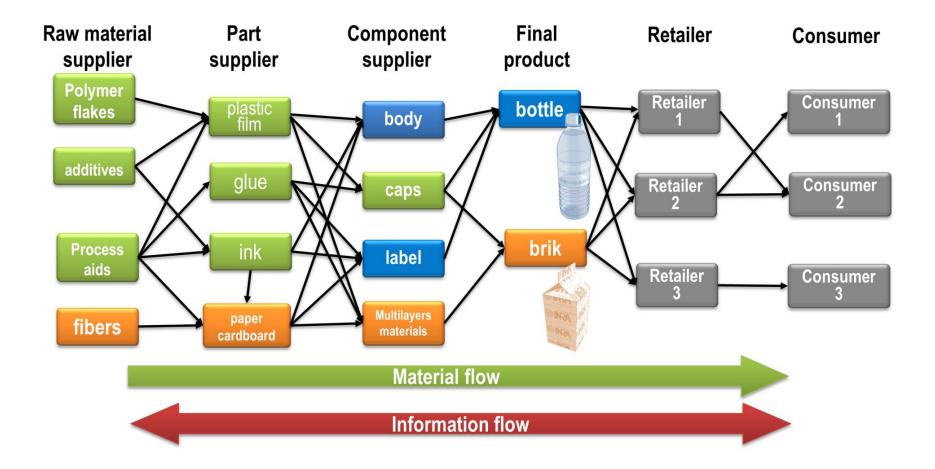
AIChE Journal 59, 1183 (2013).
Chemical Engineering Science 99, 2 (2013).
Journal of Applied Polymer Science 119, 1492 (2011).
Food Additives and Contaminants 26, 1556, (2009).
Food Additives and Contaminants 24, 194 (2007).
Food Additives and Contaminants 24, 75 (2007).
Industrial & Engineering Chemistry Research 45, 7941 (2006).
AIChE Journal 51, 1080 (2005).
Food Additives and Contaminants 22, 956 (2005).

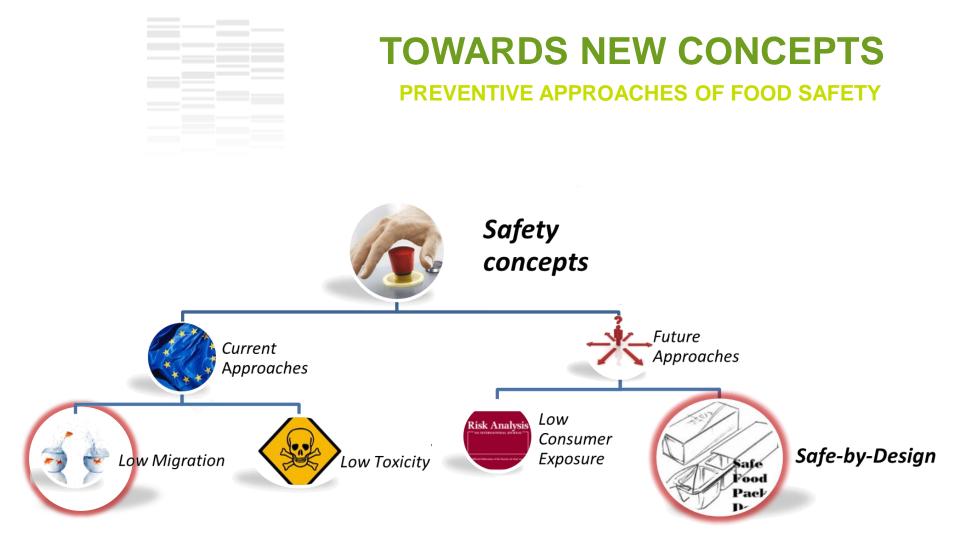


TOWARDS NEW CONCEPTS

DEVELOPING COOPERATION BETWEEN STAKEHOLDERS

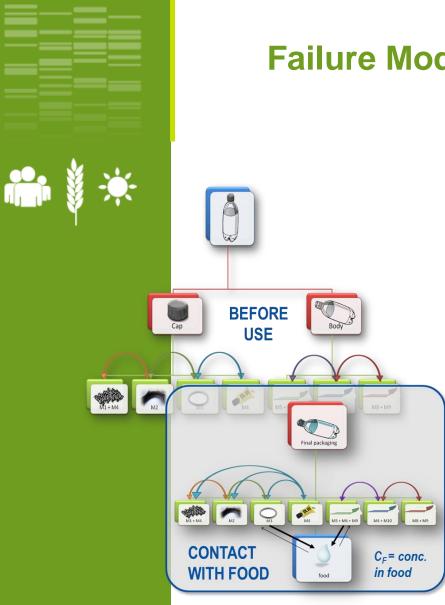
Material flow


Information flow



TOWARDS NEW CONCEPTS

DEVELOPING COOPERATION BETWEEN STAKEHOLDERS



17 groups of materials listed in Annex 1 of regulation 1935/2004/EC are still not covered by specific measures. They must be produced according to **Good Manufacturing Practices** (Regulation 2023/2006/EC) incl. 3 pillars: quality assurance system, quality control system, documentation.

olivier.vitrac@agroparistech.fr Oct 2015

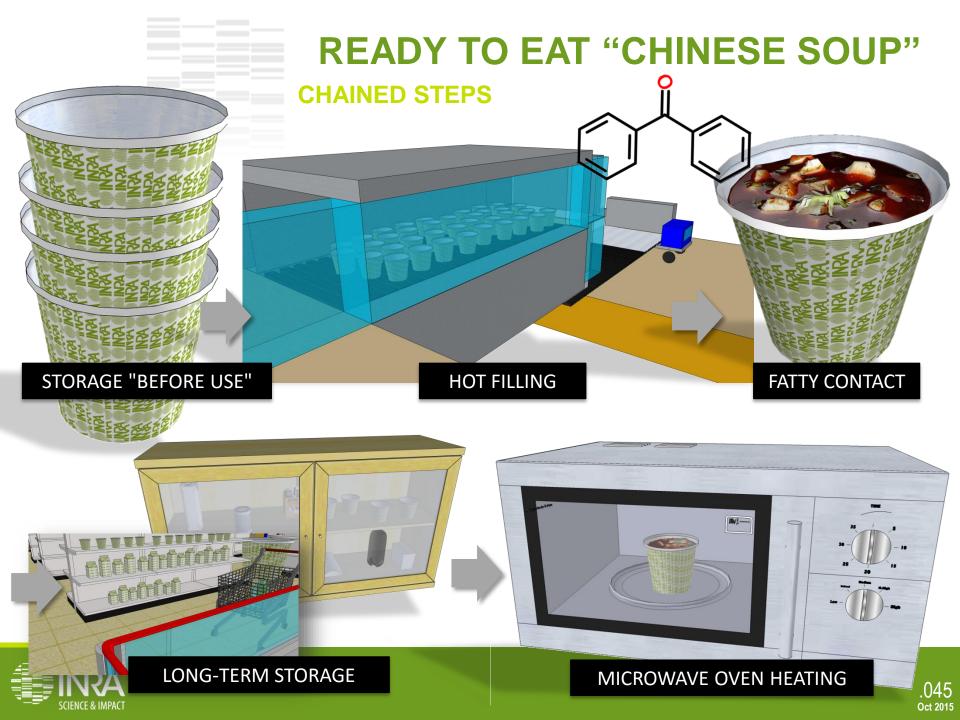
Nguyen et al. 2013, AIChE J.

Failure Mode Effects Criticality Analysis

- List of components and functions
- Failure = migration mode tree
- **Severity** $= f(C_F)$

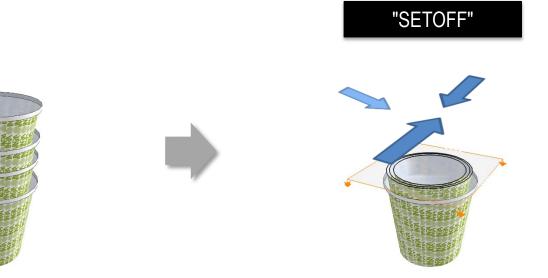
SEVERITY-

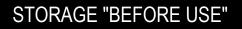
.044 Oct 2015


- Dimensionless scale
- Normalized by toxicological data
- Substance and material independent
- Linear to C_F for acceptable C_F values and non-linear beyond

Criticality ranking

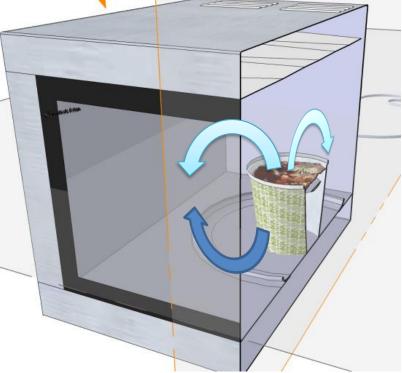
- ➢ by component
- by substance
- by process or storage step
- Comparative designs


Ensuring detectability


via calculations and simulation

ALL STEPS MUST BE INCLUDED IN THE ANALYSIS

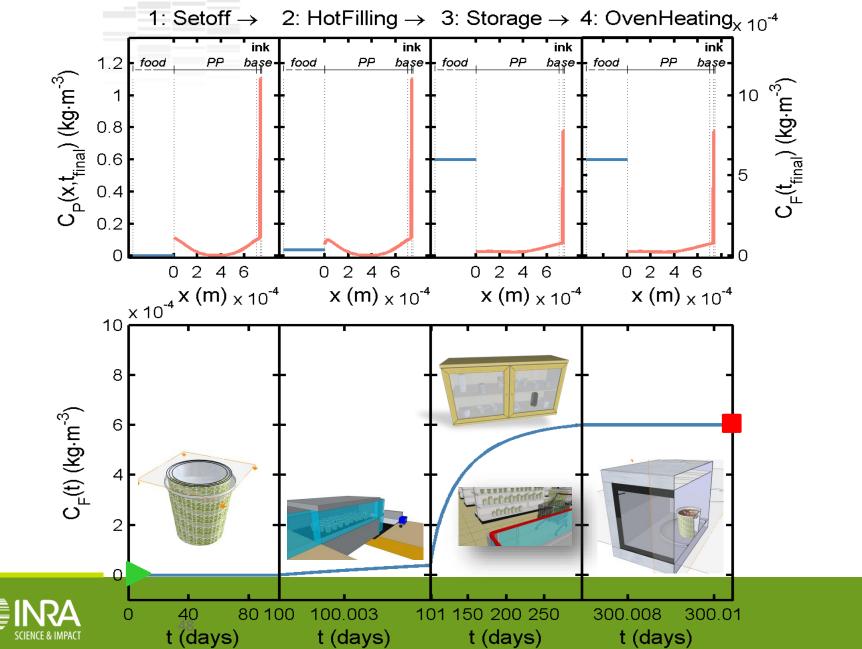
As soon they cause a redistribution of packaging constituents through the different materials (even without food contact).

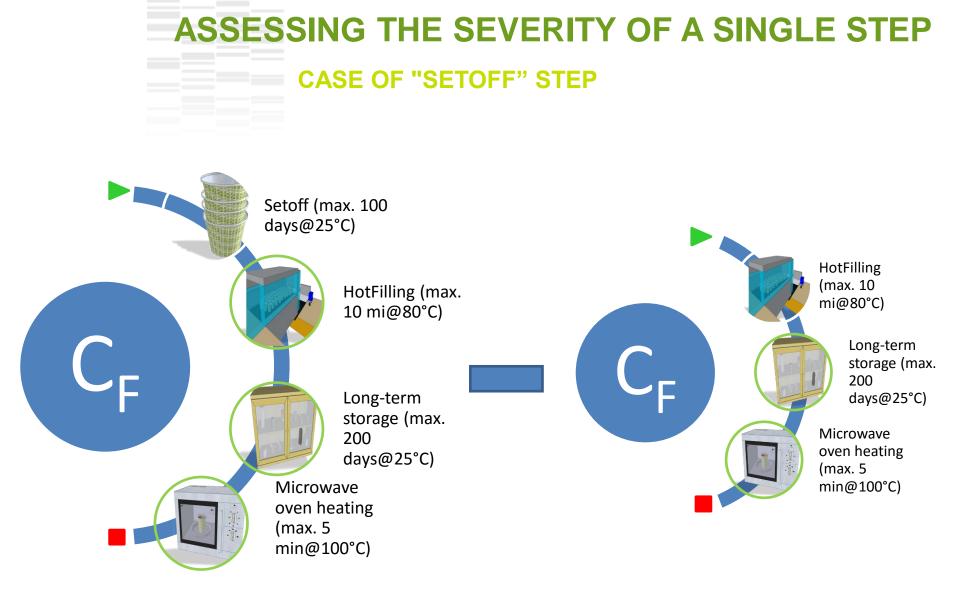

CROSS-MASS TRANSFER BETWEEN INTERNAL AND EXTERNAL SURFACES

ALL STEPS MUST BE INCLUDED IN THE ANALYSIS

Mass transfer in the gas phase cannot be neglected during curing, longterm storage and oven heating

MICROWAVE HEATING


TRANSFER IN VAPOR PHASE +STEAM EXTRACTION

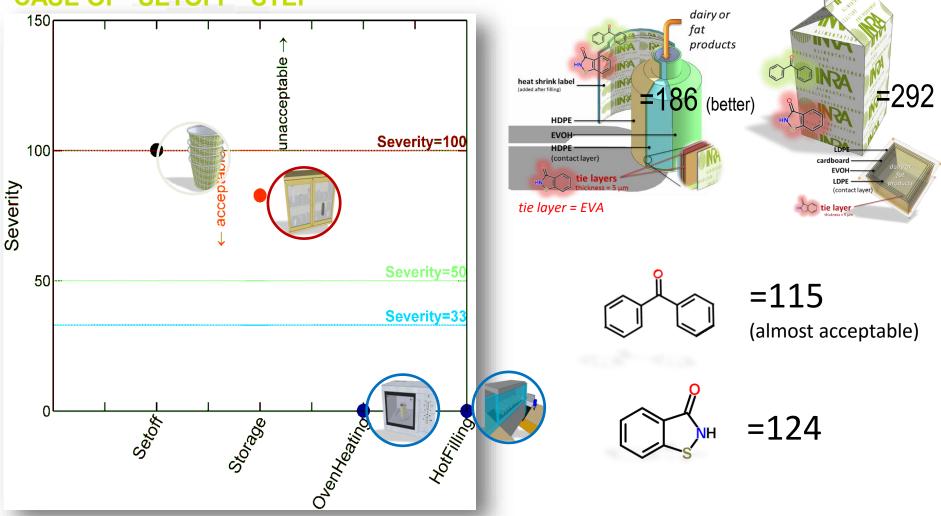


CHAINED STEPS

.048

Oct 2015

Full methodology described in *AIChE J.* 2013, **59**(4), 1183-1212



$$\operatorname{Severity}\left(\hat{C}_{F}\left(\operatorname{step} i\right)\right) = f \left| \max \left| \underbrace{C_{F_{M}}}_{comparison with step i removed} - C_{F_{M}}}_{comparison with step i removed}, C_{F_{i}} \right|_{i}$$

.049 Oct 2015

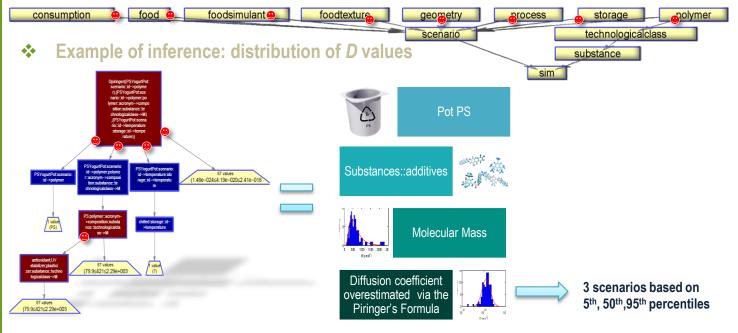
COMPARING THE SEVERITY OF A SEVERAL STEPS, PACKAGING DESIGNS, SUBSTANCES...

CASE OF "SETOFF" STEP

Full methodology described in AIChE J. 2013, 59(4), 1183-1212

.050

Oct 2015


AUTOMATIC GENERATION OF MIGRATION SCENARIOS

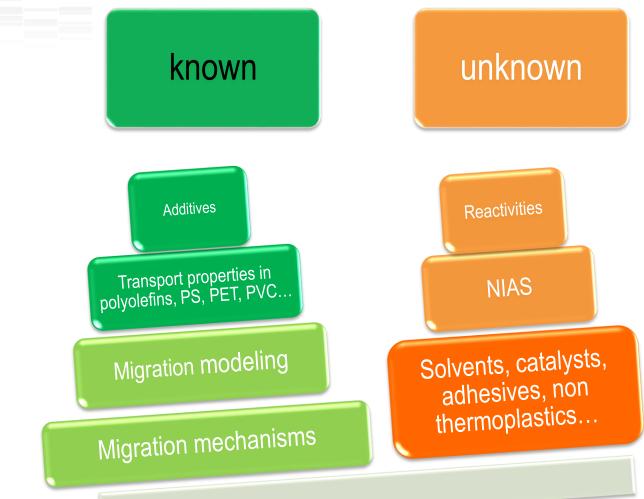
id	parent	geometry	polymer	food	foodsimulant	foodtexture	step	temperature	comment
LDPEYogurtBottle		smallbottle	LDPE	yogurt	ethanol50	liquid	storage	chilled	pot of yogurt
HDPEOilCap		cap	HDPE	oil	fatty	liquid	storage	ambient	oil bottle cap
PPDrinkGoblet		gobletPP	PP	hotdrink	ethanol50;fatty	liquid	consumption	hot	coffee goblet
PButterContainer		container	PP	butter	fatty	semisolid	storage	chilled	butter containe
PPCreamPot		container	PP	cream	fatty	semisolid	storage	chilled	pot of cream
PPDrinkStraw		straw	PP	yogurt	ethanol50	liquid	consumption	ambient	straw
PSYogurtPot		pot	PS	yogurt	ethanol50	semisolid	storage	chilled	pot of yogurt
PSDrinkGoblet		gobletPS	PS	hotdrink	ethanol50;fatty	liquid	consumption	hot	coffee goblet
PVCSauceLid		gasket	pPVC	sauce	fatty	liquid	process	sterilization	cover gasket
PVCSauceLid2	PVCSauceLid		pPVC	sauce	fatty	liquid	storage	ambient	

- 9 packaged food products purchased on the French market in 2011
- Geometry and materials were determined

Simulation scenarios were automatically generated via an expert system

olivier.vitrac@agroparistech.fr Oct 2015

COMPLEMENTARY TOOLS AND PROSPECTS overview

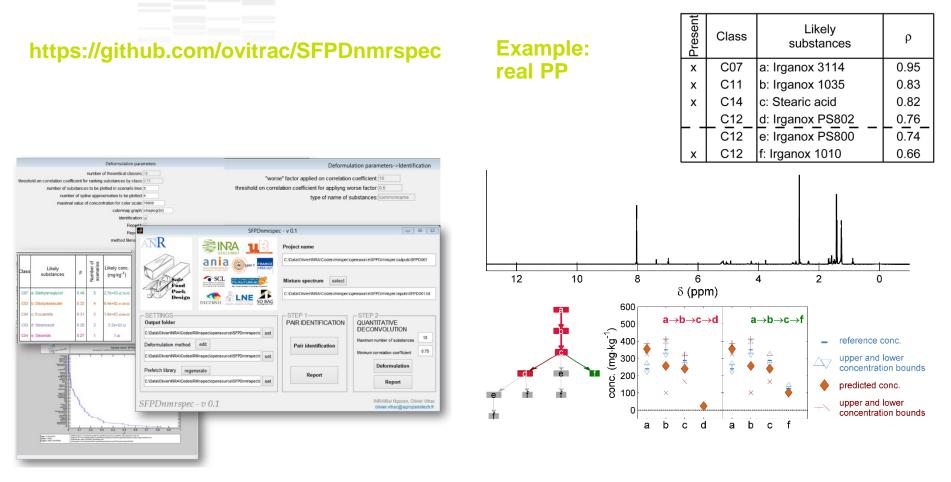


05

olivier.vitrac@agroparistech.fr / UMR 1145 Food Processing and Engineering

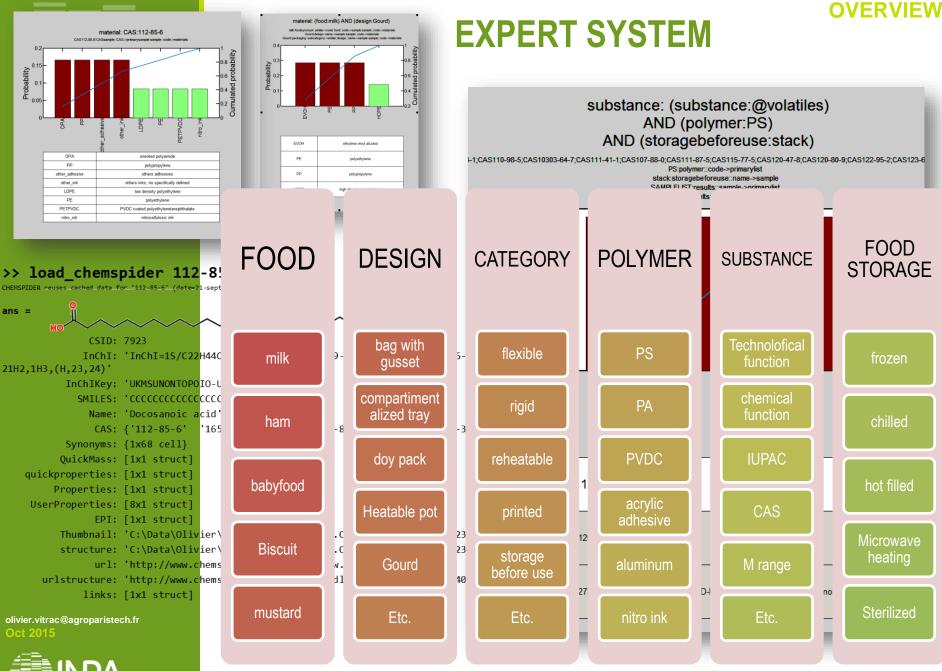
MIGRATION MODELING

STATE OF THE ART



RESEARCH

EFFORT



Industrial & Engineering Chemistry Research 54, 2667 (2015).

SCIENCE & IMPAC

.055 Oct 2015

EXAMPLES OF GENERATION OF TRANSPORT PROPERTIES FOR VOLATILE CONTAMINANTS

ROUGH ESTIMATES OF A AIR/POLYMER PARTITION COEFFICIENTS

>> FMECAKairP acetophenone

LOAD_CHEMSPIDER extraction of ChemSpiderID=7132 ('acetophenone') completed in 10.26 s LOAD_CHEMISPIDER: updated cache

7132.mat 21-sept.-2015 21:37:19 77.6 kBytes C:\Data\Olivier\INRA\Codes\MS\cache.ChemSpider CHEMSPIDER reuses cached data for 'acetophenone' (date=21-sept.-2015 21:37:19)

ans =

9.1995e-06

>> FMECAKairP ethylbenzene

LOAD_CHEMSPIDER extraction of ChemSpiderID=7219 ('ethylbenzene') completed in 11.9 s LOAD_CHEMISPIDER: updated cache

7219.mat 21-sept.-2015 21:42:34 107.1 kBytes C:\Data\Olivier\INRA\Codes\MS\cache.ChemSpider CHEMSPIDER reuses cached data for 'ethylbenzene' (date=21-sept.-2015 21:42:34)

ans =

2.2485e-04

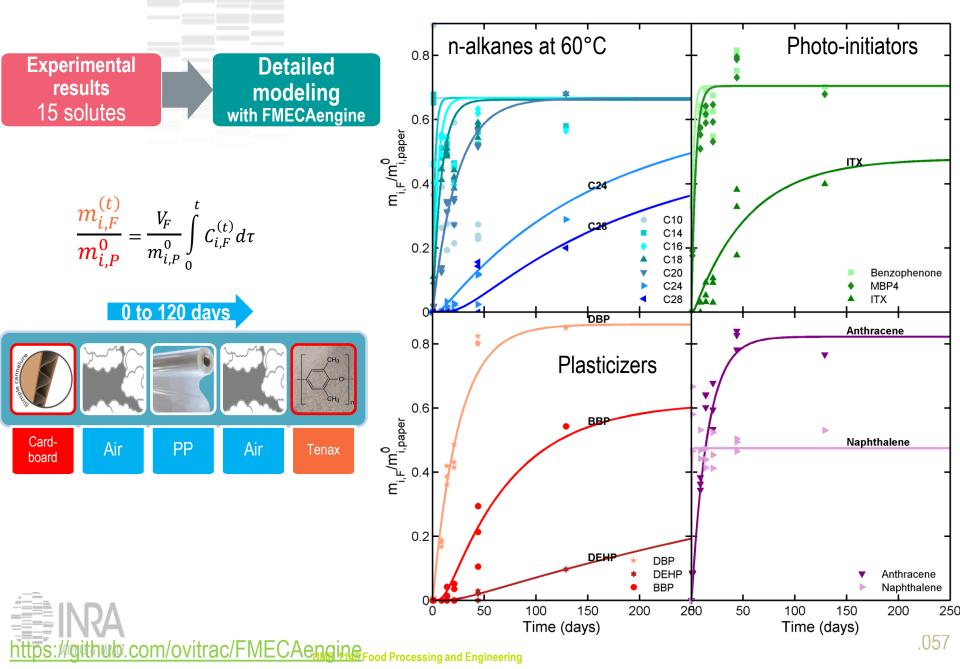
>> FMECAKairP 'benzoic acid'

LOAD_CHEMSPIDER extraction of ChemSpiderID=238 ('benzoic acid') completed in 5.746 s LOAD_CHEMISPIDER: updated cache 238.mat 21-sept.-2015 21:45:01 41.2 kBytes C:\Data\Olivier\INRA\Codes\MS\cache.ChemSpide

CHEMSPIDER reuses cached data for 'benzoic acid' (date=21-sept.-2015 21:45:01)

ans =

1.3674e-08



H₂

CH₃

PREDICTIONS vs EXPERIMENTS

Thank you

Merci Danke **Thank You** ขอบคุณค่ะ Terima kasih Dhanyavad Kam sah hamnida Xièxie Gracias Vielen dank ευχαριστώ

AGRICULTURE & NATURAL RESOURCES

Home About CANR CANR Dean Search Pre-College Institute of Ag Tech Undergraduate Graduate FOOD, ENERGY & ENVIRONMENT Image: Constraint of Ag Tech Undergraduate Image: Constraint of Ag Tech Undergraduate Image: Constraint of Ag Tech Image: Constraint of Ag Tech</

Dr. Olivier Vitrac lectures and workshops

Date: July 1, 2015 Location: School of Packaging, MSU

LECTURES ABOUT

"PREDICTION OF MASS TRANSFER IN POLYMERS"

by OLIVIER VITRAC, Ph.D.

INRA, FRANCE

http://www.canr.msu.edu/events/vitrac http://www.packaging.msu.edu/industry_testing_services/downloadable_presentations

When	Presentation	Where
29th June (Monday) 10:00am- 11:00am	Diffusion coefficients of organic solutes in polymers: new perspectives of prediction	Conference Center, Room 100, School of Packaging
30th June (Tuesday) 2:00pm- 3:00pm	An atomistic Flory-Huggins formulation for the tailored prediction of activity and partition coefficients	The Ternes Outreach Center, Room 120, School of Packaging Registration required
1st July (Wednesday) 2:00pm- 4:00pm	Workshop: Prediction of the migration: beyond conventional estimates*	The Ternes Outreach Center, Room 120, School of Packaging Registration required