Engineering Conferences International ECI Digital Archives

Integrated Continuous Biomanufacturing II

Proceedings

Fall 11-2-2015

Optimal control of a continuous bioreactor for maximized beta-carotene production

Nazmul Karim *Texas A&M University,* nazkarim@mail.che.tamu.edu

Jonathan Raftery Texas A&M University

Xinghua Pan Texas A&M University

Follow this and additional works at: http://dc.engconfintl.org/biomanufact_ii Part of the <u>Biomedical Engineering and Bioengineering Commons</u>

Recommended Citation

Nazmul Karim, Jonathan Raftery, and Xinghua Pan, "Optimal control of a continuous bioreactor for maximized beta-carotene production" in "Integrated Continuous Biomanufacturing II", Chetan Goudar, Amgen Inc. Suzanne Farid, University College London Christopher Hwang, Genzyme-Sanofi Karol Lacki, Novo Nordisk Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biomanufact_ii/100

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Integrated Continuous Biomanufacturing II by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Optimal control of a continuous bioreactor for maximized carotene production

Jonathan P. Raftery and Dr. M. Nazmul Karim

Artie McFerrin Dept. of Chemical Engineering, Texas A&M University, College Station, Texas 77843

β-carotene Market

- An orange pigment produced by diverse organisms such as plants, fungi, and bacteria
- Used in many industries:
 - Food
 - Animal nutrition
 - Pharmaceuticals
 - Cosmetics
 - Colorant

http://www.bellybytes.com/nourish/images/betacarotene.jpg

- Projected worldwide market value is \$1.4 billion in 2019¹
- Higher antioxidant activity found in naturally produced β -carotene when compared to the synthetic version

β-Carotene Production via Recombinant Saccharomyces cerevisiae

Continuous Production of β -Carotene

Motivation

- Batch Operation of a Carotene Bioreactor
- Extension of Batch Operation to Continuous Systems
- Model Predictive Control of a Continuous Bioreactor to Maximize β -Carotene Production
- Results and Conclusions

Batch Process Overview

The aim of this study is to:

- Develop a suitable and reliable kinetic model for the carotene production in batch cultures of an engineered Saccharomyces cerevisiae strain using glucose as the main substrate
- Apply this model to predict cell growth, substrate consumption, ethanol and acetic acid formation and later assimilation.
- Determine the carotene productivity of the batch system

Batch Operation of a β -carotene Bioreactor

L

Saccharomyces cerevisiae SM 14 ¹	
Beta-carotene	
3 Liters	
20 g/L	XGPE
6 L/min	A, 0, 1, 2,
72 hours	Volume
30°C (controlled)	0
4 (controlled) Air	
160 140 120 100 120 100	, L.H., Gomez, J.M., and Kao, K.C. ing carotenoids production in yeast via re laboratory evolution. <i>Metabololic</i>
	Saccharomyces cerevisiae SM 14 ¹ Beta-carotene 3 Liters 20 g/L 6 L/min 72 hours $30^{\circ}C$ (controlled) 4 (controlled) 4 (controlled) 4 (controlled) 4 (controlled) 60 100

Unstructured Batch Models

Growth Rate Models:

$$\mu = \mu_G + \mu_E + \mu_A$$
$$\mu_G = \left(\frac{\mu_{max,G} \cdot \xi_E \cdot \xi_A \cdot G}{K_{SG} + G + a_{ge} E + a_{ga} A}\right)$$
$$\mu_E = \left(\frac{\mu_{max,E} E}{K_{SE} + E + a_{eg} G + a_{ea} A}\right)$$
$$\mu_A = \left(\frac{\mu_{max,A} A}{K_{SA} + A + a_{ag} G + a_{ae} E}\right)$$

Inhibition Models:

 $\xi_E = f(E) \qquad \xi_A = f(A)$

Batch Models:

$$\frac{\mathrm{dX}}{\mathrm{dt}} = \mathrm{r}_{\mathrm{X}} = (\mu_{\mathrm{G}} + \mu_{\mathrm{E}} + \mu_{\mathrm{A}}) \,\mathrm{X}$$

$$\frac{dG}{dt} = r_G = -\frac{\mu_G X}{Y_{X/G}}$$

$$\frac{dE}{dt} = r_E = k_1 \ \mu_G X \ - \ \frac{\mu_E X}{Y_{X/E}} \label{eq:generalized_eq}$$

$$\frac{\mathrm{dA}}{\mathrm{dt}} = \mathrm{r}_{\mathrm{A}} = (\mathrm{k}_{2}\mu_{\mathrm{G}} + \mathrm{k}_{3}\mu_{\mathrm{E}})\mathrm{X} - \frac{\mu_{\mathrm{A}}\mathrm{X}}{\mathrm{Y}_{\mathrm{X/A}}}$$

$$\frac{\mathrm{dP}}{\mathrm{dt}} = r_{\mathrm{P}} = (\alpha_{1}\mu_{\mathrm{G}} + \alpha_{2}\mu_{\mathrm{E}} + \alpha_{3}\mu_{\mathrm{A}}) \cdot \mathbf{X} + \beta \mathbf{X}$$

Estimation Procedure and Results

Read original data and smooth it via cubic spline

Generate μ data, calculate the growth rate parameters minimizing the SEE and set those values

$$\int_{t_1}^{t_2} \mu \, dt = \int_{x_1}^{x_2} \frac{1}{x} \, dx \to \mu = \frac{\ln\left(\frac{x_2}{x_1}\right)}{t_2 - t_1}$$

With the initial values and parameter guesses solve the differential equations

Compare the model predictions with the smooth data

Calculate the R^2 for each curve, where the best value for each is one (1). The objective function for minimization is:

min $Z = 5 - (R_p^2 + R_x^2 + R_s^2 + R_e^2 + R_a^2)$

Use *fmincon* algorithm to determine the minimum value of the objective function

Plot and analyze the parameters from the optimal solution

Carotene Productivity

$$\frac{120 \frac{\text{mg}}{\text{L}}}{(72 + \text{x}) \text{ hrs}} = 1.46 \frac{\text{mg}}{\text{L} \cdot \text{hr}}$$

(assuming x = 10 hours for filling, cooling, and cleaning)

Continuous Process Overview

The aim of this study is to:

- Propose a novel continuous carotene production process utilizing a two tank system to allow for the independent manipulation of the inlet flow rate and inlet glucose composition
- Develop continuous models describing the dynamic nature of this novel fermentation system
- Utilize dynamic optimization techniques to develop a model predictive controller capable of maximizing carotene production to rival that of batch production processes

Continuous Operation of a β-carotene Bioreactor

Process Models:

$$\frac{dG}{dt} = \frac{F_2}{V} \cdot G_f - \frac{F_{out}}{V} \cdot G - r_G$$

$$\frac{dX}{dt} = -\frac{F_{out}}{V} \cdot X + \mathbf{r}_X$$

$$\frac{dP}{dt} = -\frac{F_{out}}{V} \cdot P + r_P$$

$$\frac{dE}{dt} = -\frac{F_{out}}{V} \cdot E + r_E$$

$$\frac{dA}{dt} = -\frac{F_{out}}{V} \cdot A + r_A$$

$$\frac{dV}{dt} = F_{G+M} + F_M - F_{out}$$

 $F_{out} = f(V)$

Optimization Algorithm

Starting at the beginning of continuous operation characterized by the time $t = t_{switch} = 20$ hours:

- 1. Discretize the process models for a given $\Delta t = \frac{1}{n}$ hours with $n \ge 10$
- 2. Solve the following optimization problem for the optimum hourly flowrate from each tank, F_1 and F_2 :

$$\min_{F_1 \ F_2} -P_t + \alpha \sum_t (V_t - V_r)^2$$

s.t. Discretized ODEs
 $0 \le F_{1,2} \le F_{max}$

3. Repeat Step 2 for each hour after t_{switch} , using the previous hour's end state as the new initial condition, to determine the optimum flowrate as the system moves forward in time

Steady State Analysis

Concentration Profiles

Optimal Control Actions

Batch vs Continuous Comparison

Batch Operation

β -carotene Concentration

$$P = 120 \ \frac{mg}{L}$$

Fermentation Time

$$t = 72$$
 hours

 β -carotene Concentration

$$P = 28.73 \ \frac{mg}{L}$$

Continuous Operation

Inlet Flowrate (F_{total}) and Volume

$$F_{total} = 0.169 \frac{L}{hr}$$
 $V = 3 L$

Productivity

Productivity

 $\frac{P}{t} = 1.46 \frac{mg}{L \cdot hr} \qquad \qquad \frac{P \cdot F}{V} = 1.62 \frac{mg}{L \cdot hr}$

Continuous operation **increases** process productivity by **10.5%** when compared to traditional batch processing.

Conclusions

- Continuous operation has the potential to increase productivity of bioreactor systems
- A novel two-feed continuous reactor system capable of independently varying the dilution rate and inlet glucose concentration was implemented
- A bi-level dynamic optimization methodology was to determine the **maximum productivity** of steady-state continuous β -carotene production
- Continuous production shows a 10.5% increase in βcarotene productivity compared to a tradition batch system

Acknowledgements

for Advanced Study

Texas A&M University Institute

Texas A&M Institute for Advanced Studies

National Science Foundation

Dwight Look College of Engineering Graduate Teaching Fellowship

Karim Research Group (M. Carolina Ordoñez-Franco, Tejasvi Jaladi, Melanie DeSessa)

Kao Research Group (S. cerevisiae SM14)

