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ABSTRACT 
 

In underground excavation projects using drill and blast methods or tunnel boring machine 

(TBM), the installation of ground support has become one of the longest components of the 

development cycle. In many applications, fiber reinforced shotcrete has been used 

successfully for several decades as temporary or permanent ground surface support. For 

priority headings and critical permanent underground infrastructures, the reduction of the 

time required to spray and cure fiber reinforced shotcrete before re-entry is critical to increase 

the development rate. In addition, from an environmental, logistical and economic viewpoint, 

minimizing the amount of material to produce, transport and handle from the surface has 

become critical as well. In this context, this paper discusses the development of an 

engineered shotcrete providing rapid strength and toughness development to allow fast re-

entry and enhanced energy absorption capacity. Working on cement chemistry, fiber selection 

and dosage, matrix/fiber synergy, fiber rebound reduction, equipment and shotcrete process 

overall, this paper presents a new alternative ground support solution for challenging ground 

conditions. 
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INTRODUCTION 

 

Sprayed concrete (shotcrete) is a well established and proven component of ground support 

systems used worldwide in underground excavation projects. 

Nowadays, headings size has become larger and larger with the use of larger and more 

sophisticated equipment. In parallel, mining projects become deeper and deeper involving 

more and more challenges to extract the ore and keep the development cycle as short as 

possible. 

In this context, the installation of ground support has become one of the longest components 

of the development cycle. In addition, larger headings and deeper excavations lead to larger 

amount of material to transport from the surface on longer distance, which increases lead 

time to production, logistics and labor.  
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Fiber Reinforced Shotcrete for Ground Support 

 

The use of fiber reinforced shotcrete (FRS) has been adopted for many years in underground 

applications to replace mesh in gravity failure conditions and to manage rockbursts and 

ground deformations in moderate stress conditions. FRS is also used as temporary ground 

support with tunnel boring machine or as first pass support in dynamic (high-stress) 

conditions to manage seismicity and ensure safer re-entry before permanent ground support 

installation. 

In all cases, FRS is one element of the ground support system (static or dynamic) and its 

performances should be analyzed in that perspective rather than individually. In other words, 

its design and performances should be optimized in order to maximize its contribution to the 

selected ground support system.    

On the other hand, the design of the ground support system should also take into account how 

the use of FRS can enhance or limit the system performances.  

For example, in high-stress conditions where seismic events can produce high intensity 

rockbursts and deformations exceeding 100 mm the low strain (ductility) capacity and the 

limited load bearing capacity of FRS at such large deformations, limits its contribution to the 

dynamic ground support system. Its more brittle behavior under dynamic loading (high strain 

rate) and low tensile strengths limit also its use in such high stress conditions because of the 

risk of surface spalling. In such conditions FRS or plain shotcrete must be combined to other 

systems such as yielding bolts, mesh, cable lacing or mesh straps that increases energy 

absorption and provides a better control of large ground displacements. 

 

Development of Engineered Fiber Reinforced Shotcrete 

 

The enhancement of FRS tensile/flexural performances under dynamic loading seems to be 

critical in high stress conditions to improve its contribution to the dynamic ground support 

system performance and its spalling resistance.   

In this context, King Shotcrete Solutions (Canada) has conducted a testing program on an 

Engineered Cementitious Composite (ECC) for ground support in challenging ground 

conditions. ECC is a high performance fiber reinforced cementitious materials, which 

undergoes pseudo-strain hardening ductility under uniaxial tensile loading. The ultimate 

tensile strength of ECC varies between 3-8 MPa with a ductility ranging from 1-5% (Li, 

2003). This improved tensile and flexural ductility is provided through a multi-cracking 

mechanism that keeps the cracks tight and limits localized cracking leading to brittle failure. 

For these reasons, ECCs have been used in several civil and tunneling applications such as 

retrofitting surface repair, tunnel lining, irrigation channel lining and seismic reinforcement 

(Li, 2003). 

 

 

METHODOLOGY 

 

Material 

 

Even if ECC mix design is relatively well known from the literature (Li, 2003), its practical 

use and process ability in underground conditions including delivery, mixing, pumping and 

spraying can be challenging and requires a good understanding of the shotcrete placement 

process.  
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Based on its strong expertise in shotcrete material, equipment and shotcrete process, King 

Shotcrete Solutions has conducted a testing program organized around the following 

objectives:  

 

- Developing a shotcrete material with enhanced tensile/flexural performances to 

increase energy absorbing capacity and potentially reduce shotcrete thickness layer. 

 

- Providing rapid performance development to reduce curing period before re-entry in 

order to speed-up the development cycle and reduce lead time to production. 

 

- Guarantying robust practical application of the developed mixture including delivery, 

mixing, pumping and spraying in underground mining conditions. 

 

In order to provide enhanced tensile/flexural strength and ductility such as strain-hardening 

behavior, an in depth analysis and optimizing the cementitious matrix / fiber synergy must be 

conducted (Li, 2003). 

Because such high tensile/flexural cementitious materials generally require must higher fibers 

dosage (selected with special cares) than typical FRS, its process ability becomes quickly a 

challenge. In addition to an high dosage of fibers, the development of a rapid strength 

shotcrete requires a very reactive cement chemistry that does not gain leads to some 

additional serious challenges in terms of pumpability and sprayability (Reny & Ginouse, 

2014) (Lemay, Jolin, & Gagné, 2014). For these reasons and as demonstrated in previous 

works (Ginouse & Reny, 2015) the use of dry-mix shotcrete process appears more adequate 

than wet-mix process to guarantee robust pumpability and rapid performances development 

after spraying. 

Indeed, in dry-mix process the contact period between the dry pre-blended material conveyed 

using compressed air, and the mixing water added to the dry mixture via a watering placed 

about 3 m from the nozzle outlet, represent a second fraction as opposed to several minutes 

and even hours when using wet-mix process. This unique feature makes dry-mix shotcrete a 

very robust process for conveying and placing/spraying low workability materials such as 

highly fibered rapid hardening mixtures. 

Moreover, for thin shotcrete layer applications dry-mix shotcrete is once again very adequate 

due to its capacity to provide smooth/consistent material flow at low output, which facilitates 

greatly the application and the control of thin shotcrete layers. 

In spite of these numerous advantages, the use of dry-mix shotcrete requires some special 

cares to ensure consistent material flow into the machine/delivery hoses and for limiting dust 

production at the nozzle. 

After several tests, all these aspects have been taken into account to produce an engineered 

fiber reinforced shotcrete, pre-blended and bagged in 20 kg bags containing dry ingredients 

only to avoid cement hydration before use. 

 

Methods and Equipment 

 

Different types of test panels illustrated in Figure 1 have been filled with the considered 

shotcrete material using full-size dry-mix shotcrete equipment shown in Figure 2. 

Since the dry pre-blended shotcrete mixture has low flowability due to the considered mix 

formula, the shotcrete equipment has been adjusted to ensure smooth and consistent shotcrete 

operations (see Figure 2 – left). 
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Figure 1: Shotcrete nozzle and test panels used to produce shotcrete specimens 

Once the nozzle has manually adjusted the shooting consistency, all test panels were filled 

without interruption in one single shotcrete operation conducted in accordance with the ACI 

506R-05 Guide to Shotcrete guidelines. This ensured good uniformity and quality of the 

shotcrete specimens produced. 

Moreover, in order to reproduce curing conditions similar to the one found underground, no 

wet curing has been conducted on the hardened specimens. Test panels have been only 

covered using plastic sheets after completion of shotcrete operations in order to prevent 

excessive surface drying. All specimens have been placed in 50% relative humidity 

environment after 24 hours and kept covered with plastic sheets until testing without 

moisture intake. 

 

 
Figure 2: (Left) Dry-mix shotcrete machine; (Right) Modified round determined panel 

to produce 38mm thick test specimens 
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Three (3) test specimens per age and per tests have been produced in a controlled 

environment and tested at early and later age as listed in Table 1.  

 

Table 1: Testing program summary for evaluation of early and later age material 

properties  

 Age Material Properties Test Procedure 

Early Age 

1h, 2h, 

4h, 6h, 

24h 

Compressive Strength (UCS) Adapted from ASTM C-116* 

24h Flexural Toughness ASTM C-1550 

Later Age 

7days 

   & 

28days 

Compressive Strength (UCS) ASTM C-1604 

Flexural Strength ASTM C-78 

Splitting Tensile Strength ASTM C-496 

28days 
Flexural Toughness 

ASTM C-1550 

ASTM C-1550 modified** 

Uniaxial Tensile Strength See details below 

*Known as the End Beam Test (Heere & Morgan, 2002) 

**Using 38 mm (instead of 80 mm) thick round determinate panels (see Figure 2 – right) 

 

Three (3) 38 mm thick round determinate panels (RDP) have been fabricated for evaluating 

at 28 days the flexural toughness obtained in thinner layer applications (see Figure 2 – right). 

In this scenario, half thick RDP panels were considered due to the practical difficulties to 

control lower thickness layer in mining conditions. Despite the panels’ thickness, the testing 

procedure conducted on the 38 mm thick RDP panels was exactly the same as the one 

specified by the ASTM C1550. 

Because the uniaxial tensile test is more sensitive to the testing configurations and conditions 

than the other test conducted, five (5) test specimens have been cored from the test panels 

presented in Figure 3 (left). 

 

 
Figure 3: Shocrete cores extracted from test panel (left) and tested for direct tensile 

strength evaluation (right) 

As shown Figure 3 (Left) special cares have been taken to ensure that the cores were 

extracted from the panel perpendicularly to the spraying direction, and this in order to 

evaluate the actual contribution of the fibers orientation in the material tensile properties. 
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Once cored, each specimen was grinded in accordance with the ASTM C-39 in order to 

guarantee perpendicularity between core axle and the superior/inferior flat faces. Then a 5 

mm wide x 10 mm depth notch was sawn at half height to localize the failure in tension to 

one cross-section (see Figure 3 – right). The uniaxial tensile test was conducted after 28 days 

using a tensile loading setup composed by a 220kN load cell and clip-on type extensometers 

illustrated in Figure 3 (right) recording the notch opening. Each core (Figure 3 - right) is 

about 160 mm height with a nominal diameter of 75 mm and a notched section of 65 mm. 

Once notched the specimen is glued to aluminum cylinders illustrated in Figure 3 (right) and 

fixed to the loading device. The tensile loading rate is adjusted in real-time based on the 

notch opening and varies from 0.01 mm/min initially to 0.1 mm/min once the peak load is 

achieved. 

 

 

RESULTS and DISCUSSION 

 

The following section discussed the test results representing the average of at least three (3) 

experimental values issued from the testing program presented above. 

 

Rapid Strength Development 

 

A rapid strength gain is often aimed when a fast re-entry after shotcrete operations is 

required. This is particularly true in deep mining/high stress conditions involving seismicity. 

In a such situation where FRS is typically used as a first pass support or in double pass 

system, it is quite critical to reach as quick as possible the minimum strengths ensuring a safe 

re-entry and reducing by means the waiting period before installation the other components 

of the dynamic ground control system. In this way, a rapid performance development 

shotcrete will allows a safer and faster ground support installation.  

Re-entry criteria used for FRS are usually based on its uniaxial compressive strength (UCS) 

that is relatively easy to measure in practice and that is related to its shear resistance 

governing its failure mode at early age (Bernard E. S., 2009). 

In Canadian mines located in Northern Ontario, a minimum UCS value of 5 MPa is usually 

required before re-entry underground area supported with shotcrete (Dufour, O’Donnell, & 

Ballou, 2003). This value is typically achieved after a curing period of 4 to 6 hours in the best 

case scenario and after 8 hours in more conservative but still realistic approach. 

As shown Table 2, this re-entry value (5 MPa) is achieved after 1 hour using the developed 

ECC shotcrete, which is 4 to 8 times faster than what the typical FRS technology can 

provide. From an operation/production standpoint, this rapid strength development represents 

a serious option to speed-up the ground support system installation and therefore reduce lead 

time to the next development phase. 

 

Table 2: Early-age compressive strengths obtained from End-Beam Test 

Age Compressive Strength (MPa) 

1 hour 5.5 

2 hours 6.5 

4 hours 10.9 

6 hours 20.3 

24 hours 36.8 
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Moreover, as illustrated in Figure 4 a very gradual and smooth failure in compression with 

multi-cracking were observed as opposed to a brittle and sudden rupture with localized 

cracking usually obtained with typical FRS tested using the end beam tester. In other words, 

when the peak load was achieved the material didn’t collapse suddenly but it continued to 

support the load while deforming. A fiber bridging mechanism producing multi-cracking 

instead of localized macro-cracking can explain the more ductile behavior observed during 

the end beam test.  

 

 
Figure 4: Hardened specimen tested in compression at 1 hour using end-beam tester 

 

Enhanced Flexural and Tensile Performances 

 

At later age (28 days) the shotcrete mixture tested also shown superior performances with 

respect to typical FRS mixtures. 

This performances improvement is particularly pronounced when looking at the flexural and 

tensile properties presented in Table 3 to 6. Indeed, in addition to a quite high UCS value 

measured at 28 days (57 MPa), the uniaxial tensile properties presented in Table 4 and 

illustrated in Figure 5 distinguish the developed shotcrete mixture from the typical FRS. 

 

Table 3: Later age hardened properties 

Properties 
Age 

7 days 28 days 

Compressive Strength (MPa) - ASTM C1604 48.8 57.2 

Flexural Strength (MPa) – ASTM C78 8.5 8.2 

Splitting Tensile Strength (MPa) – ASTM C496 6.25 6.55 

 

Under uniaxial tensile loading, the shotcrete material achieved a maximum tensile strength of 

4.1 MPa and exhibited an improved post-behavior (see Figure 5). 

 

Table 4: Uniaxial tensile test results 

Tensile Properties 
Age 

28 days 

Pmax(kN) 14.5 

σmax(MPa) 4.1 
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As illustrated in Figure 5, once the uniaxial peak load was reached no brittle tensile failure 

occurred and the tensile load was maintained while the notch opening increased and cracking 

development at the notched section continued. 

This enhanced tensile behavior can also explain the very high flexural toughness values 

reported in Table 5 and 6. 

Indeed, using 80 mm thick RDP panels and following the ASTM C1550, over 1000 Joules at 

40 mm displacement were obtained after only 24 hours curing and over 600 Joules at 28 

days. These values are significantly higher than the typical values required for poor rock 

quality in challenging ground conditions (Bernard E. S., 2009) (Grimstad, & al., 2002). 

 

 
Figure 5: Uniaxial tensile load curve versus notch opening obtained at 28 days shotcrete 

cores 

 

The loss of flexural toughness between 24 hours and 28 days requires however further 

explanations. Indeed, while a typical cracking pattern was observed on RDP specimens tested 

at 24 hours, none of the three (3) 80 mm thick panels tested at 28 days exhibited the typical 

three (3) fully developed cracks. As a result a loss of toughness to 673 Joules at 40 mm was 

measured and was attributed to a possible material embrittlement due to a stiffer cementitious 

matrix developed after 28 days (Bernard E. S., 2008). 

 

Table 5: Flexural toughness results – ASTM C1550 

Properties 
Age 

1 day 28 days 

Corrected Peak Load (kN) 47.1 50.1* 

Corrected Energy Absorption (Joules) @ 40 mm 1068 673* 

*Cracking pattern not following the ASTM C1550: only two fully developed cracks with 

minor cracks. 
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As illustrated in Figure 6 a higher residual post-peak loading capacity was observed on RDP 

panels tested at 24 hours compared to those broken at 28 days. As indicated the UCS value 

obtained at 28 days was much higher than at 24 hours (57 MPa and 38 MPa respectively) 

leading usually to a stiffer material with stronger fiber/matrix anchoring that may resulted in 

fiber breaking instead of fiber bridging mechanism. 

Despite the lower peak load, the half thick panels provided 378 Joules at 40 mm (see Table 6) 

with a post-peak strain-hardening behavior until 20 mm net deflection (see Figure 6). 

 

Table 6: Flexural toughness results – Modified ASTM C1550 

Properties 
Age 

28 days 

Panel Thickness (mm) 44 

Peak Load (kN) 16.51 

Energy Absorption (Joules) @ 40 mm 378.5 

 

Therefore, even using about half thick thickness layer, the considered shotcrete material will 

provide a fair energy absorbing capacity to the ground support system and an enhanced 

ductility. The level of energy absorption obtained with half thick RDPs open the discussion 

on reducing the FRS thickness layer by using this new shotcrete material.  

 

 

 
Figure 6: Post-peak embrittlement observed on 80 mm thick RDP panels and Post-peak 

strain hardening ductility observed on 40 mm thick RDP panels tested according to the 

ASTM C1550 
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In spite of this possible embrittlement phenomenon observed on 80 mm thick RDPs, the tests 

conducted on half thick RDPs allows for discussing this point from a more structural angle. 

Indeed, as shown Table 5-6 and Figure 6, the post-peak behavior obtained at 28 days seems to 

be also function of the specimen thickness and not only governed by the intrinsic material 

properties such as compressive and tensile strengths. While as expected the half thick RDPs 

provided lower peak load capacity than 80 mm thick RDPs, thinner specimens were able to 

maintain the peak load over 10 to 20 mm deflection before gradually failing according to a 

typical cracking pattern. The post-peak behavior observed on thinner and thicker RDPs at 

similar age points out ASTM C1550 limits of testing intrinsic material properties. The 

flexural toughness results issued from this testing program do not seem to be only function of 

material properties but it seems to be also affected by the testing conditions such as stress 

distribution during loading and boundary conditions that may explain the obtained results. 

 

 

CONCLUSIONS 

 

The enhanced flexural/tensile performances obtained with the developed shotcrete material 

and its rapid UCS development can significantly increase the energy absorption/loading 

capacity of the ground support system while reducing lead time to re-entry in safer 

conditions.  With over 1000 Joules in flexural toughness measured only after 24 hours the 

used of this engineered fiber reinforced shotcrete could represent a new important element of 

a dynamic ground system designed for challenging ground conditions with high seismicity 

and rock bursts activities. Moreover, because of its enhanced tensile strength and post peak 

behavior under tensile/flexural loading its resistance against spalling caused by seismic 

events should be definitely increased, reducing by means the risks of damage and potential 

injuries. 

If used as a first pass support, the material will also guarantee a faster re-entry after 

completion of shotcrete operations due to its rapid strength development, leading by means to 

a safer and faster support installation. 

In addition, because of the higher tensile, flexural and compressive performances obtained in 

this testing program, a potential reduction of the shotcrete thickness layer should be 

investigated for gravity failure and moderate stress conditions. In this scenario, thin layer 

applications using this new shotcrete material will results in additional benefits from 

economical, logistical and operational standpoint.  

Finally, in-situ trials on this new material are currently in progress in Northern Canadian 

mines to confirm its performances in underground conditions and also evaluate its actual 

contribution to the current ground support system used in high stress/seismic zones. 
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