Engineering Conferences International ECI Digital Archives

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes

Proceedings

2015

On-line analysis of catalytic biomass products using a high pressure Tandem mirco-Reactor GC/MS

M. Soll Frontier Laboratories

R.R. Freeman Frontier Laboratories

Chu Watanabe Frontier Laboratories

Ichi Watanabe Frontier Laboratories

Y.M Kim Frontier Laboratories

See next page for additional authors

Follow this and additional works at: http://dc.engconfintl.org/biorefinery_I
Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

M. Soll, R.R. Freeman, Chu Watanabe, Ichi Watanabe, Y.M Kim, N. Teramae, and K. Wang, "On-line analysis of catalytic biomass products using a high pressure Tandem mirco-Reactor GC/MS" in "Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes", Nicolas Abatzoglou, Université de Sherbrooke, Canada Sascha Kersten, University of Twente, The Netherlands Dietrich Meier, Thünen Institute of Wood Research, Germany Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biorefinery_I/22

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Authors

M. Soll, R.R. Freeman, Chu Watanabe, Ichi Watanabe, Y.M Kim, N. Teramae, and K. Wang

On-line analysis of catalytic biomass products using a high pressure Tandem mirco-Reactor GC/MS

<u>M. Soll¹</u>, R.R. Freeman¹, Chu Watanabe¹, Ichi Watanabe¹, Y. M. Kim¹, N. Teramae² and K. Wang³

Frontier Laboratories⁽¹⁾, Tohoku University⁽²⁾ and Iowa State University⁽³⁾

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes

September 27-October 2, 2015 Atlantica Caldera Crete Paradise Hotel Chania (Crete), Greece

IOWA STATE

"Almost everything in your daily life depends on catalysts." – Argonne National Laboratory

 Continuous search for new catalysts and "good" biomasses – one that works "better" than those being used for a given process

• Test parameters

- Temperature Surface area (contact time) Atmosphere Pressure Effective life time Activity regeneration
- Rapid screening of new catalysts (and biomasses) is essential if sustainable "green" products are going to exist in the future.

Dimensions for "Rapid screening"

Think "smart": fast, flexible, μ scale, online GC/MS analysis !

Fast pyrolysis: Important features for GC/MS

Pyrolyzers and μ -Reactors

Sample Conditioning

- Precise Temperature Control
- Low dead volume
- Inert surfaces
- No cold or hot spots

Design of Single µ-Reactor

From Single to Tandem µ-Reactor

Catalytic bed temperature profiles [100 - 900°C]

Handling and workflow

Temperature control and two analytical modes of Tandem µ-Reactor **On-line EGA-MS analysis**

Temp

Catalytic conversion of ethanol to ethylene

(Std. config = low pressure)

Online – MS analysis

Separation analysis

" Linear temp. mode "

" Stepwise temp. mode "

🔘 Frontier Lab

Innovative pneumatics for HP Tandem µ-Reactor

No retention time shift due to BP regulators and open split interface

Catalyst (ZSM-5) at 230°C, : BP1: 0.5-3.0 MPa, BP2: 0.1 MPa, Restrictor: 40 cm , i.d. 50 µm, Column: UA1-30M-2.0F, Detector: FID

High pressure sample injection of solids

Two applications using the high pressure Tandem μ -Reactor

Conversion of lignin (He/H₂ and P)
 Conversion of Ethanol (T and P)

Applying different parameters:

- Biomass (nature, amount)
- Catalysts (type, particle size, catalyst/biomass ratio)
- Temperature (1st and 2nd Reactor)
- ✤ Reaction-/Carrier-Gases (He/H₂)
- ✤ (High)-Pressure
- ✤ GC/MS settings

Non-catalytic pyrolysis of kraft lignin under high pressure helium (carrier gas)

Pyrogram obtained heart-cut EGA-GC/MS analysis from 300 to 500°C under 2MPa of helium atmosphere

Non-catalytic "hydropyrolysis" of kraft lignin under high pressure hydrogen

EGA Thermogram of Kraft Lignin under Different Hydrogen Pressure.

Heart-Cut EGA-GC/MS at Different Hydrogen Pressures

Results lignin conversion under high presssure hydrogen

Heart-Cut EGA-GC/MS results showed that most of pyrolyzates of first EGA peak were phenolic pyrolyzates of lignin, such as guaiacols, pyrocatechol, cresol, eugenol, and homovanillic acid.

Second EGA peak shows quite large amount of valuable aromatic compounds such as BTEXs, naphthalenes, biphenyls, phenanthrenes, and anthracenes and their peak intensities were increased under higher pressure. This can indicated that there is an important interaction between char intermediates and hydrogen gas and this interaction can produce large amount of aromatic oil under high hydrogen pressure.

Ethanol over MgO-SiO2 Catalyst under hydrogen and high pressure plus different catalytic bed temperatures

1: Ethylene, 2: Ethane, 3: Propene, 4: Water, 5: Acetaldehyde, 6,8,9: Butene, 7: Butadiene, 10: Ethanol, 11: Diethyl ether

Ethanol over MgO-SiO2 Catalyst under hydrogen and high pressure: Different catalytic bed temperatures

SUMMARY

- Tandem μ-Reactor facilitates the rapid characterization of catalysts and biomasses
- Full spectrum of operating parameters can be investigated SW controlled / online
- Easy and fast exchange of catalysts
- Real time analysis of gaseous or liquid samples
- automated analysis of solids (using "Autoshot" auto-sampler)
- species identification using MS
- High pressure option without loss of chrom. performance

The development and use of "best"/proper catalysts means new products, lower costs, and a broader range of feedstocks

Ouestions? Tandem Renewable Reactant

catalys cess nic gases ISU eactor iomass () ם N rbon FAST PYROLYSIS GNB Ru 明 Solids saturated DILLCTS High Son Scale-Up Scale-Up Son Scale-Up Selective

