#### Engineering Conferences International ECI Digital Archives

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes

Proceedings

2015

#### EVOLUTION OF PALM OIL MILLS INTO BIOREFINERIES: TECHNICAL, AND ENVIRONMENTAL ASSESSMENT OF SIX BIOREFINERY OPTIONS

Jesus Alberto Garcia-Nunez Washington State University

Manuel Garcia-Perez Washington State University

Daisy Tatiana Rodriguez Colombian Oil Palm Research Center

Nidia Elizabeth Ramirez Colombian Oil Palm Research Center

Carlos Fontanilla Colombian Oil Palm Research Center

#offotweth's additional works at: http://dc.engconfintl.org/biorefinery\_I
Part of the <u>Chemical Engineering Commons</u>

#### **Recommended** Citation

Jesus Alberto Garcia-Nunez, Manuel Garcia-Perez, Daisy Tatiana Rodriguez, Nidia Elizabeth Ramirez, Carlos Fontanilla, Claudio Stockle, James Amonette, Craig Frear, and Electro Silva, "EVOLUTION OF PALM OIL MILLS INTO BIOREFINERIES: TECHNICAL, AND ENVIRONMENTAL ASSESSMENT OF SIX BIOREFINERY OPTIONS" in "Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes", Nicolas Abatzoglou, Université de Sherbrooke, Canada Sascha Kersten, University of Twente, The Netherlands Dietrich Meier, Thünen Institute of Wood Research, Germany Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biorefinery\_I/9

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

#### Authors

Jesus Alberto Garcia-Nunez, Manuel Garcia-Perez, Daisy Tatiana Rodriguez, Nidia Elizabeth Ramirez, Carlos Fontanilla, Claudio Stockle, James Amonette, Craig Frear, and Electro Silva

#### EVOLUTION OF PALM OIL MILLS INTO BIOREFINERIES: TECHNICAL, AND ENVIRONMENTAL ASSESSMENT OF SIX BIOREFINERY OPTIONS



Jesus Alberto Garcia-Nunez<sup>1,2</sup> - Manuel Garcia-Perez<sup>1</sup>, Deisy Tatiana Rodriguez<sup>2</sup>, Nidia Elizabeth Ramirez<sup>2</sup>, Carlos Fontanilla<sup>2</sup>, Claudio Stockle<sup>1</sup>, James Amonette<sup>3</sup>, Craig Frear<sup>1</sup> and Electo Silva<sup>4</sup>

<sup>1</sup>Department of Biological System Engineering, Washington State University, Pullman, WA 99164-6120 <sup>2</sup>Colombian Oil Palm Research Center, Process and Uses Division, Bogotá, Colombia, South America <sup>3</sup>Pacific Northwest National Laboratory, PO Box 999, Richland, Washington 99352 <sup>4</sup>Universidad Federal de Itajubá, BRASIL, South America

ECI, Biorefinery I: Chemical and Materials from Thermo-Chemical Biomass Conversion and Related Processes, Sep 27 – Oct 2, 2015





b) Revamping of existing facilities.





### **Hurdles on biorefinery selection**

- A major scientific issue is how to generate and select the best biorefinery option among those that can be implemented for a given situation.
- The selection requires a deep understanding of the potential technologies, a thorough analysis of the impact of the alternatives on sustainability, societal and economic indicators.
- Different methodologies have been published for selecting biorefinery options.





#### **General Objective**

To propose a new methodology for the evaluation of paths to convert of an existing industry into a biorefinery and the implementation of this methodology for the conversion of a Colombian palm oil mill.



# Oil palm sector and palm oil mills (POMs)



- Oil palm agroindustry has been recognized as one of the agricultural businesses where biorefinery concepts can be implemented\*.
- Crude palm oil (CPO), the main product of this agribusiness, is the most consumed vegetable oil in the world.\*\*
- The biomass generated by this agro-industry is almost twice the CPO produced, is produced permanently during 25 year, and is located in a single point (POM).

\*\*Fedepalma, Statistical Yearbook 2014-The Oil Palm Agroindustry in Colombia and the World 2009 - 2013, Javegraf, Bogotá. D.C.- Colombia, 2014.

<sup>\*</sup> B. Vijayendran, Bio products from biorefineries - trends, challenges and opportunities, J. Bus. Chem. 7 (2010) 109–115.





## Biomass generated at the plantations

Components of an oil palm Leaf FFB Trunk Roots and Ground cover Main components of the fresh fruit bunch (a) and the fruit (b)





#### Oil palm extraction process









#### Excel Program





| Input variables | Output variables | Functions |  |  |
|-----------------|------------------|-----------|--|--|
| 2,600           | 1,450            | 500       |  |  |

V2: To migrate the Excel version to a web platform.





#### **Requirement Specifications**



#### **AT THE MILL**

- POM Capacity: 30 t FFB h<sup>-1</sup>.
- Working time: **5000 hours year**<sup>-1</sup>.
- The POM is not connected to the electrical grid.
- The electricity is generated by low pressure boiler and steam turbine.
- It is required a complementary Diesel fuel to run the POM.
- EFB is disposed in a pit near to the POM





#### **Data acquisition for baseline scenarios**

#### - At the field

- Amount of fertilizers
- Fuels at the field
- LUC

#### - At the POM

- Available biomass
- Operational conditions
- Water requirements
- Biomass characteristics



#### Baseline at the POM







Technology readiness level (TRL) description (Source Overend 2014)



Description TRL Basic principles observed **TRL 1.** CONCEPT: technology concept formulated **TRL 2**. **TRL 3**. CONCEPT: experimental proof of concept **VALIDATION:** in laboratory **TRL 4**. **TRL 5**. VALIDATION: in industrial environment **TRL 6. DEMONSTRATION:** in industrial environment **TRL 7.** DEMONSTRATION: prototype in operational context SYSTEM: complete and qualified **TRL 8.** SYSTEM: proven and economically competitive **TRL 9.** 



#### TRL for the new products according with



#### the previous literature review.

| Products from "new" technologies    | TRL   | Products from "new" technologies | TRL   |
|-------------------------------------|-------|----------------------------------|-------|
| Phenol from POME                    | TRL 3 | Bio-composites                   | TRL 5 |
| Chemical via catalytic technologies | TRL 3 | Biochar from slow pyrolysis      | TRL 6 |
| Enzymes production                  | TRL 3 | Bio-oil from fast pyrolysis      | TRL 6 |
| Cellulosic Ethanol                  | TRL 4 | Activated carbon                 | TRL 8 |
| Bio-coal from torrefaction          | TRL 4 | Pellets and briquettes           | TRL 8 |
| Food for ruminants                  | TRL 4 | Compost                          | TRL 9 |
| Cellulose pulp and paper            | TRL 4 | Biogas production and use        | TRL 9 |
| Hydrogen and synthesis gases        | TRL 4 | Electricity generation (CHP)     | TRL 9 |
| Bio-plastics                        | TRL 4 | Pretreatment                     | TRL 9 |







**C1: Biogas**) Production of biogas from the anaerobic treatment of the POME and its utilization for electricity generation.

**C2: Compost**) Composting of empty fruit bunches (EFB), fiber with POME and electricity generation from biogas.

**C3: CHP**) CHP unit for the utilization of 100% of the biomass to produce electric energy surplus in addition to electricity from the biogas.

**C4: Pellets**) Pellets production, including biomass drying and biogas uses.

**C5: Biochar**) Biochar production and biogas use.

**C6: Bio-oil**) Bio-oil and biochar production plus biogas and syngas burning.

#### **Concept 1. Biogas production**



#### **Concept 2. Compost and Biogas**



#### **Concept 3. Cogeneration and Biogas**



#### **Concept 4. Pellets and Biogas**



#### **Concept 5. Biochar and Biogas**



#### Concept 6. Bio-oil, Biochar, and Biogas







### Summary products



**Biorefinery Concepts** 





### Summary products







## Boundary conditions for LCA of POM biorefinery concepts (Cradle to Gate)









## Carbon footprint



# Reduction between 30 and 99% compared with the baseline scenario



#### **LCA Eutrophication Potential**







NER





Is improved up to 26% in C4







# CAPEX and OPEX for the biorefinery concepts

| Draduction Costs -              | Biorefinery Concepts |         |      |         |         |         |  |  |
|---------------------------------|----------------------|---------|------|---------|---------|---------|--|--|
|                                 | Biogas               | Compost | СНР  | Pellets | Biochar | Bio-oil |  |  |
| CAPEX (USD t <sup>-1</sup> FFB) | 0.71                 | 0.87    | 2.85 | 1.19    | 2.45    | 2.38    |  |  |
| OPEX (USD t <sup>-1</sup> FFB)  | 1.62                 | 6.77    | 6.72 | 3.39    | 5.69    | 7.33    |  |  |





#### Main Economic Indicators among the biorefinery concepts

|                                       | Biorefinery Concepts |         |        |         |         |         |  |  |
|---------------------------------------|----------------------|---------|--------|---------|---------|---------|--|--|
| Economic Indicators                   | Biogas               | Compost | СНР    | Pellets | Biochar | Bio-oil |  |  |
| NPV (Thousands USD)                   | 2,503                | 3,420   | -4,819 | 13,953  | -9,344  | 6,821   |  |  |
| IRR (%)                               | 24                   | 27      | 3      | 56      |         | 20      |  |  |
| Payback period (years)                | 6                    | 5       |        | 3       |         | 8       |  |  |
| Extra incomes USD t <sup>-1</sup> FFB | 3.3                  | 4.5     | 1.9    | 12.8    | -2.1    | 9.6     |  |  |





#### Minimum sale prices to achieve economic feasibility of the biorefinery concepts

|                         | Products from the biorefinery concepts  |                                   |                                   |                                   |                                   |  |  |  |  |
|-------------------------|-----------------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|-----------------------------------|--|--|--|--|
| Biorefinery<br>Concepts | Electricity<br>(USD kWh <sup>-1</sup> ) | Compost<br>(USD t <sup>-1</sup> ) | Pellets<br>(USD t <sup>-1</sup> ) | Biochar<br>(USD t <sup>-1</sup> ) | Bio-oil<br>(USD t <sup>-1</sup> ) |  |  |  |  |
| C1                      | 0.062                                   |                                   |                                   |                                   |                                   |  |  |  |  |
| C2                      | 0.092                                   | 19.46                             |                                   |                                   |                                   |  |  |  |  |
| C3                      | 0.121                                   |                                   |                                   |                                   |                                   |  |  |  |  |
| C4                      | 0.092                                   |                                   | 40.75                             |                                   |                                   |  |  |  |  |
| C5                      | 0.092                                   |                                   |                                   | 216.30                            |                                   |  |  |  |  |
| C6                      | 0.092                                   |                                   |                                   | 60.00                             | 162.72                            |  |  |  |  |







#### Total labor per shift per each biorefinery concepts

|             | Biogas | Compost | СНР | Pellets | Biochar | Bio-oil |
|-------------|--------|---------|-----|---------|---------|---------|
| Technicians | 0.5    | 1       | 0.5 | 1       | 1       | 1       |
| Operators   | 1      | 5       | 4   | 6       | 6       | 7       |
| Total       | 1.5    | 6       | 4.5 | 7       | 7       | 8       |





#### Results Generation (Summarized Results)



|         | LCA                  |                                   |                    | Econor               | Social  |         |      |        |
|---------|----------------------|-----------------------------------|--------------------|----------------------|---------|---------|------|--------|
| Cs      | CO <sub>2</sub> eq.  | EP                                | NER                | Extra Inc.           | NPV     | P-back  | New  | Skills |
|         | (kg CO <sub>2</sub>  | (kg PO <sub>4</sub> <sup>3-</sup> | (MJ                | (USD t <sup>-1</sup> | (USD)   | period  | Jobs | (#)    |
|         | t <sup>−1</sup> FFB) | eq t⁻¹ FFB)                       | MJ <sup>−1</sup> ) | FFB)                 | (x1000) | (years) | (#)  |        |
| Biogas  | -585.6               | 1.23                              | 18.5               | 3.3                  | 2,503   | 6       | 1.5  | 0.5    |
| Compost | -663.7               | 0.86                              | 17.7               | 4.5                  | 3,420   | 5       | 6.0  | 1.0    |
| СНР     | -569.4               | 0.98                              | 19                 | 1.9                  | -4,819  |         | 4.5  | 0.5    |
| Pellets | -593.3               | 0.98                              | 22.9               | 12.8                 | 13,953  | 3       | 7.0  | 1.0    |
| Biochar | -872.6               | 0.98                              | 18.3               | -2.1                 | -9,344  |         | 7.0  | 1.0    |
| Bio-oil | -584.4               | 0.98                              | 21.3               | 9.6                  | 6,821   | 8       | 8.0  | 1.0    |

#### Results Generation (Normalization Process)

WASHINGTON STATE

**UNIVERSITY** 

World Class. Face to Face.







### **Choosing weighting factors**



| Categories         | Equilibrated<br>Scenario | Equilibrated Environmental<br>Scenario Scenario |    | Social<br>Scenario |
|--------------------|--------------------------|-------------------------------------------------|----|--------------------|
| Main Categories    |                          |                                                 |    |                    |
| LCA (A)            | 33.3                     | 80                                              | 10 | 10                 |
| Economic Ass. (B)  | 33.3                     | 10                                              | 80 | 10                 |
| Social (C)         | 33.3                     | 10                                              | 10 | 80                 |
| LCA                |                          |                                                 |    |                    |
| GHG emissions (D)  | 33.3                     | 60                                              | 60 | 60                 |
| EP (E)             | 33.3                     | 20                                              | 20 | 20                 |
| NER (F)            | 33.3                     | 20                                              | 20 | 20                 |
| Economic Ass.      |                          |                                                 |    |                    |
| Extra Incomes (G)  | 33.3                     | 60                                              | 60 | 60                 |
| NPV (H)            | 33.3                     | 20                                              | 20 | 20                 |
| Payback Period (I) | 33.3                     | 20                                              | 20 | 20                 |
| Social             |                          |                                                 |    |                    |
| New jobs (J)       | 50                       | 60                                              | 60 | 60                 |
| Skills (K)         | 50                       | 40                                              | 40 | 40                 |





### Best Biorefinery Concepts!!!











- The implementation of biorefinery concepts improves the environmental impacts on Carbon Footprint, Eutrophication Potential, and the Net Energy Ratio.
- 2. The methodology helps the stakeholders, the decision-makers and the policy-makers to choose different biorefinery options, taking into considerations specific site conditions by weighing values on environmental, economic and social impacts.





### ACKNOWLEDGMENTS

WSU, Cenipalma, Oil Palm Promotion Fund (FFP), administrated by Fedepalma, POMs (Entrepalmas, Agroince, Morichal, Tequendama, Manuelita)





