Engineering Conferences International ECI Digital Archives

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes

Proceedings

2015

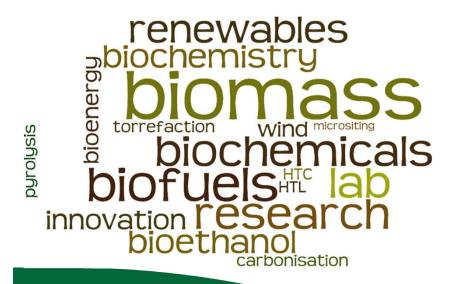
Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels

Marco Buffi *RE-CORD*

Andrea Maria Rizzo *RE-CORD*

David Chiaramonti *RE-CORD*

Follow this and additional works at: http://dc.engconfintl.org/biorefinery_I
Part of the <u>Chemical Engineering Commons</u>


Recommended Citation

Marco Buffi, Andrea Maria Rizzo, and David Chiaramonti, "Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels" in "Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes", Nicolas Abatzoglou, Université de Sherbrooke, Canada Sascha Kersten, University of Twente, The Netherlands Dietrich Meier, Thünen Institute of Wood Research, Germany Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biorefinery_I/3

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Bio-Hydrocarbons through Catalytic Pyrolysis of Used Cooking Oils: towards sustainable jet and road fuels

Marco Buffi Andrea Maria Rizzo David Chiaramonti

RE-CORD

Renewable Energy Consortium for Research and Development Florence, Italy

Outline of the presentation

- Introduction
- Experimental set-up
 - Pyrolysis unit
 - Process conditions
- Preliminary experimental results
 - Yield
 - Composition
 - Distillation test
- Conclusions & Outlook

RE-CORD

università degli studi FIRENZE

Introduction

Jet fuel specification

università degli studi FIRENZE

Jet fuel: HCs profile

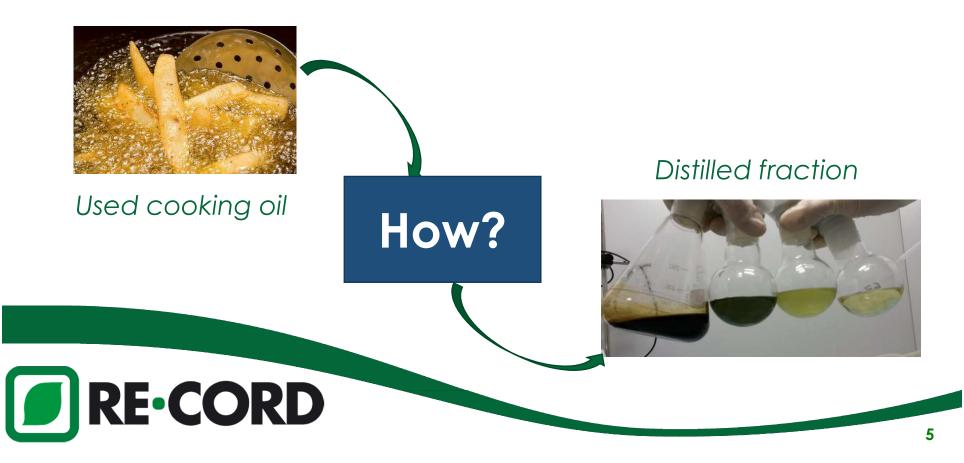
Ideal Carl	bon Length C8-C16
<i>Paraffins</i> 70 - 85%	H ₃ C CH ₃ H ₃ C Normal Paraffins CH ₃ H ₃ C Iso-paraffins Cyclic Paraffins
Aromatic < 25%	
Olefins < 5%	H_3C CH_3 H_3C CH_3 CH_3 CH_3 CH_3
S, N, O Compour	

www1.eere.energy.gov/bioenergy/pdfs/holladay_caafi_workshop.pdf

Jet fuel: chemical and physical properties

Parameters	Limit
Flash point	> 38 °C
Crystallization (freeze) point	< - 47 °C
Viscosity at – 20 °C	< 8 mm²/s
Low calorific value	> 42.8 MJ/kg

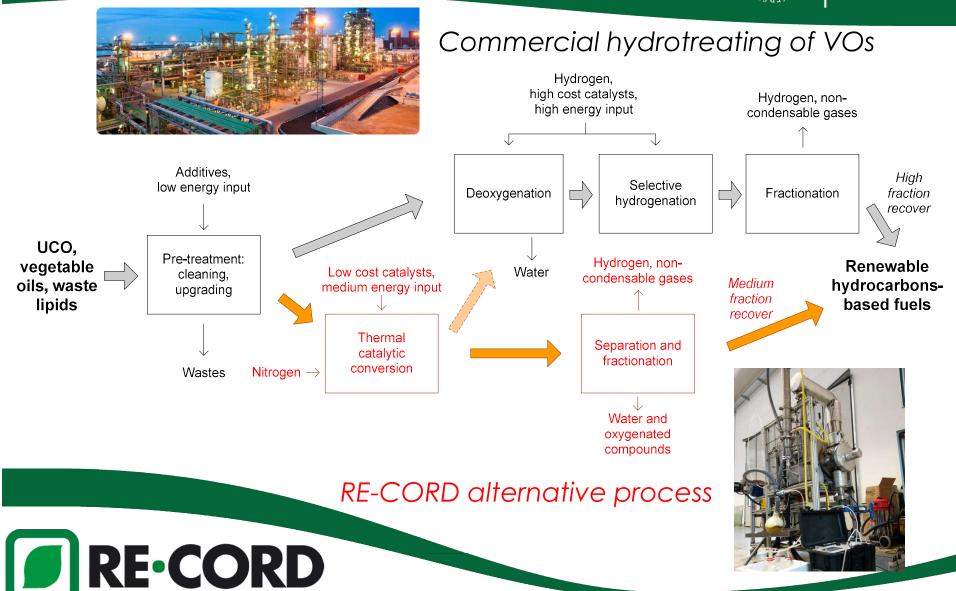
DEFSTAN 91/91


Bio-jet fuel must meet the aviation specification as a drop-in fuel!

Scope of the work

RE-CORD focuses on investigation & testing of **used cooking oils** (such as fried cooking oil) as feedstock for alternative thermochemical process.

Routes to green fuels


Some routes to produce biojet fuel from UCO and/or vegetable oils (e.g. **NExBTL** [NESTE OIL], **ECOFINING** [UOP-ENI]):

Technology	TRL	Products	_
Fischer Tropsch process	COMMERCIAL	FT SPK (Fischer– Tropsch Synthetic Paraffinic Kerosene)	I I I <u>Hig</u> OPE
Hydrotreated VOs (HEFA)	COMMERCIAL	Green jet fuel (drop- in)	

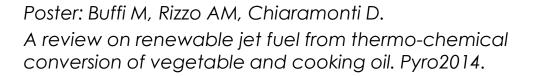
Routes to green fuels

università degli studi FIRENZE

Experimental set-up

8

Literature review



università degli studi FIRENZE

A review of renewable-jet fuel from thermo-chemical conversion of

Marco Buffi ^{1,2} , Andrea Maria Rizzo ^{1,2} , David Chiaramonti ^{1,2}			C.R.E.A.R. HIRVER Street
¹ Renewable Energy Consortium for R&D (RE-CORD), viale Morgagni 40/44, I-50134 Florence (Italy) ² CREAR - University of Florence, via S. Marta 3, I-50139 Florence (Italy)	Ltaka_		RE-CORD
	Check out the COVA and IDAM and longhts	web yage for upidetes	Queck out the CNEAR and NS-CORD web pay inform our activities

- Target: maximizing yield and quality of bio-kerosene fraction;
- 4 catalysts and 2 WHSVs have been

selected by means of literature review.

Materials & Methods

Feedstock

UNIVERSITÀ degli studi FIRENZE

- √VO, UCO, FA
- Test conditions
 - 2 process T (500 550 °C)
 - 4 different catalysts (CAT1-4)
 - 2 WHSV (2.5-4)
- Liquid characterization
 - GC/MS + GC/FID (to be concluded...)
 - Lab distillation

Feedstock: VO, UCO, FA mixture

università degli studi FIRENZE

Parameter	Unit	VO (Sunflower)	UCO (Filtered)	FA Mixture
Viscosity at 40 °C	mm²/s	26.0	38.15	18.03
Acid value	mg KOH/g	1.06	2.63	201.7
Free Fatty Acid	%	0.53	1.31	100.85
Water content	%	0.085	0.08	0.08
Total contamination	ma/ka	209	256	68
Phosphorus	mg/kg	0.11	10.1	
С	%	77.8	76.3	76.3
н	%	11.9	11.7	12.2
N	%	0.01	0.02	0.02
N	mg/kg	116	137	
0	%	10.3	11.98	11.48
LHV	MJ/kg	37.0	36.4	36.8

FAs	%wt	
Capric	0.09	C10:0
Lauric	2.83	C12:0
Mystiric	1.43	C14:0
Palmitic	4.03	C16:0
Stearic	1.17	C18:0
Oleic	61.8	C18:1
Linoleic	13.5	C18:2
Linolenic	0.38	C18:3
Erucic	6.41	C22:1
unidentified	8.38	-

Experimental setup

università degli studi FIRENZE

- Pyrolysis unit + catalytic section
- ✓ Capacity up to 1.5 kg/h;
- ✓ Up to 600 °C (500 °C);
- \checkmark Electrically heated;
- ✓ Modular condensation line;
- ✓ T, p, gas composition (CO, H2, CO2).
- ✓ WHSV = $2.5 4 h^{-1}$

RE-CORD/CREAR pyrolysis unit in Florence (ITA)

Experimental procedure

on TT 4	università degli studi FIRENZE

	1						
Feedstock	Test N.	Catalyst	Temperature	WHSV			
-	n	-	°C	1/h			
UCO	1	none		-			
UCO	2	Catalyst nr. 1		4			
UCO	4	Catalyst nr. 2		4			
UCO	5	Catalyst nr. 3	500 - 500	4			
UCO	6	Catalyst nr. 4		4			
UCO	7	Best performing		2.5			
FA	8	Best performing		2.5			

- ✓ UCO conversion. **Bio-oil** quality vs **catalyst**
- ✓ Best configuration tested again by increasing catalyst mass (WHSV).
- ✓ Best bio-oil distilled to identify bio-kerosene fractions.
- $\checkmark\,$ FA tested to compare deoxygenation behaviour vs UCO

università degli studi FIRENZE

Results

università degli studi FIRENZE

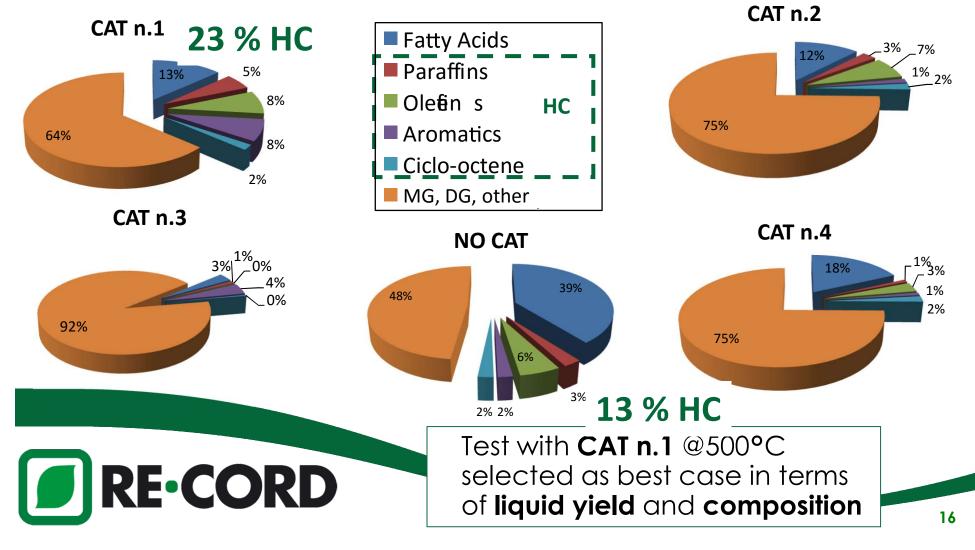
Feed rate = 1.5 kg/h

Temperature =

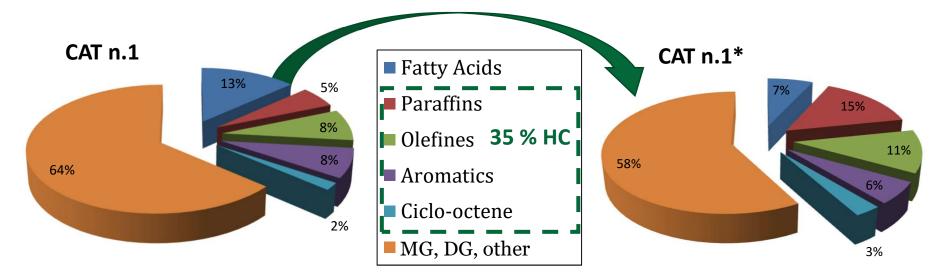
500°C

Duration = 90 min

WHSV = $4 h^{-1}$


		Catalyst				
Parameter	Unit	None	CAT n.1	CAT n.2	CAT n.3	CAT n.4
Feedstock		UCO	UCO	UCO	UCO	UCO
WHSV	1/h		4	4	4	4
Process temperature	°C	500	500	500	500	500
Liquid yield	wt%	62.70	63.64	54.55	33.74	61.72
С	wt%	76.75	76.10	76.03	77.90	78.17
Н	wt%	11.45	11.10	11.65	10.10	11.48
N	wt%	0.02	0.03	0.08	0.07	0.03
0	wt%	11.98	12.77	12.25	11.93	10.33
Water content	wt%	0.89	0.77	1.18	8.36	1.61
Density	kg/liter	0.87 🤇	0.85	0.85	0.90	0.86
LHV	MJ/kg	36.82	37.79	39.57	36.48	37.46
Acid value	mg KOH/g	117.73	74.10	61.97	20.45	80.07
Kinematic viscosity						
(40°C)	cSt	4.47	2.24	3.36	1.19	5.68

Bio-oil composition

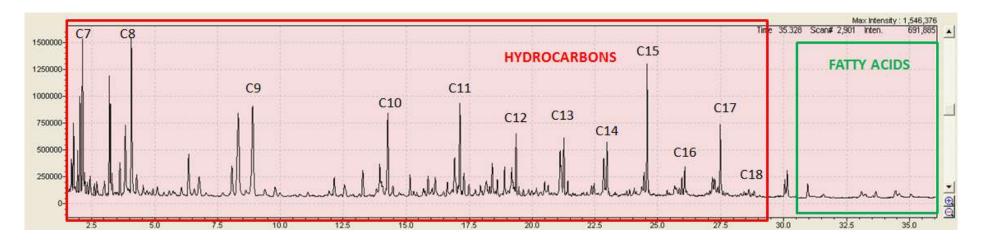

- FIRENZE
- The identification and quantification of chemical species were carried out by means of GC MS / GC FID (GC 2010 Plus – Shimadzu)

Increasing catalyst mass...

✓ Best configuration (CAT n.1) tested at 500 °C, WHSV = 2.5 h⁻¹(CAT n.1*)

Increasing catalysts mass:

Test **CAT n.1*** (UCO) was repeated feeding **FAs** @ 500 °C and WHSV = $2.5 h^{-1}$ (**CAT n.1****)



Cromatogram (CAT 1*)

@500°C, UCO, CAT 1, WHSV=2.5 h⁻¹

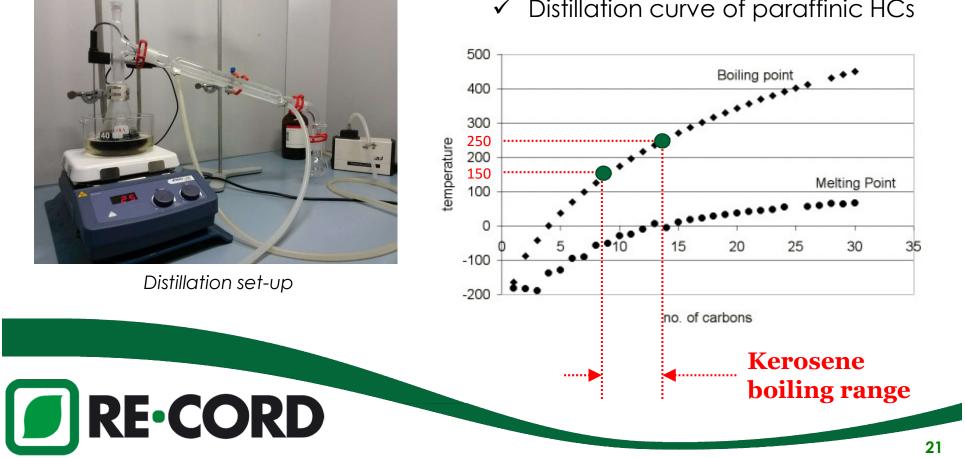
- > Higher peaks consist in **paraffinic** HCs
- > C7, C8 and C15 make up the larger fraction of HCs in bio-oil

UCO vs FA pyrolysis

università degli studi FIRENZE

Oxygen removal is significantly higher

Parameter	Unit	Filtered UCO (1 µm)	FAs
Density	kg/m³	911	
Kinematic Viscosity at 40 °C	mm²/s	38.15	18.03
Acid value	mg KOH/g	2.63	201.7
Free Fatty Acid	%	1.31	100.85
Water content	%	0.08	0.08
Ash	% (m/m)	0.01	
Total contamination	mg/kg	256	68
Insoluble impurities	%	0.05	
Phosphorus	mg/kg	10.1	
С	%	76.3	76.3
Н	%	11.7	12.2
N	%	0.02	0.02
N	mg/kg	137	
0	%	11.98	11.48
Calorific value, lower	MJ/kg	36.4	36.8

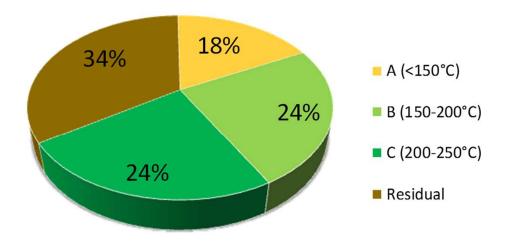

Parameter	Unit	Norm	CAT 1*	CAT 1**
Feedstock	1		UCO	FAs
WHSV	1/h		2,5	2,
Catalyst Temp.	°C	-	500	500
Liquid yield	wt%	-	63,41	48,8.
С	wt%	UNI 15104	76,295	83,5
Н	wt%	UNI 15104	11,5	12,
Ν	wt%	UNI 15104	0,04	0.0
0	wt%	calculated	12,165	3,7.
Water content	wt%	UNI 8534	0,53/5	0,1
Density	kg/liter	UNI 20 75	0,843	
LHV	MJ/ka	calculated	38,897	40,097
HHV	MJ/kg	DHN 51900-2	41,335	42,7
Acid value	·	UNI 14104	51,445	44,
Kinematic viscosity (40°C)	cSt	UNI 3104	2,48	1,
Fatty Acids	wt%	wt%	7%	169
karaffins	wt%	wt%	15%	209
Olefines	wt%	wt%	11%	129
Aromatics	wt%	wt%	6%	6%
Ciclo-octene	wt%	wt%	3%	25
Tot. HCs	wt%	wt%	35%	40%
SUM	wt%	wt%	42%	569

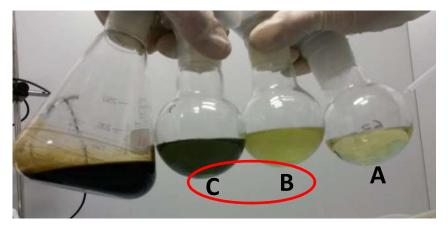
RE-CORD

Distillation test: procedure

UNIVERSI FIRENZ

- Distillation test (p_atm, CAT n.1*, 500 °C, WHSV = $2.5 h^{-1}$) \checkmark
- 4 fractions: A (<150°C); B (150-200°C); C (200-250°C) + residue \checkmark


Distillation curve of paraffinic HCs


Distillation test: UCO - CAT1*

università degli studi FIRENZE

Yields of separated fractions

Bio-intermediate in the range of kerosene fraction 48% (B + C), i.e. 30% of total feed

università degli studi FIRENZE

Conclusions

Conclusions

- Catalytic conversion through pyrolysis of UCO was performed at 500°C with 4 different catalysts (WHSV = 4 h⁻¹).
- The best result (CAT n.1) gave 63.6 %wt of bio-oil, with lower O₂, density, viscosity and higher HV than original feedstock.
- By increasing catalyst mass, no significant changes in terms of bio-oil yield were observed, but larger amount of HCs classes were detected (from 24 to 35%wt of recovered bio-oil).
- Distillation fractions in the range of kerosine showed promising properties (HC, composition)

- > Improve analytical tecniques for bio-oil analysis.
- > Increase yield (reactor / feeding system redesign).

Acknowledgements

Lorenzo Bettucci, Ilaria Marsili-Libelli, Giulia Lotti (Laboratory Staff)

Stefano Dell'Orco (MEng Student)

European Commission for funding (FP7-ITAKA project for research technological development and demonstration under grant agreement No 308807)

Partners of ITAKA project

SILO SpA for UCO

RE-CORD

Thanks for your Attention!

FIRENZE

Andrea Maria Rizzo

Contacts

marco.buffi@re-cord.org info@re-cord.org

RE-CORD

RE-CORD

 Public-private no-profit research center

- ✓ K182 Chemical Lab, fully dedicated to Biomass, Bioproducts and Renewables
- ✓ Pilot Plants

<u>Members</u>:

- ✓ Univ. of Florence (CREAR & Montepaldi),
- ✓ Spike Renewables
- ✓ Pianvallico (Mugello Municipalities, Florentine Metropolitan area)

CREAR & RE-CORD: some figures... §

UNIVERSIT

FIRENZE

DEGL

Budget (contributions) from R&D activities on Biomass/Renewables:

CREAR (2002-2015)	> 6.1 M€
RE-CORD (2012-2015)	≈ 2 M€
EU/Internat.Projects	14 (3 Coord)
National Projects	9 (4 Coord)

Patents related to the research work of RE-CORD/CREAR personnel

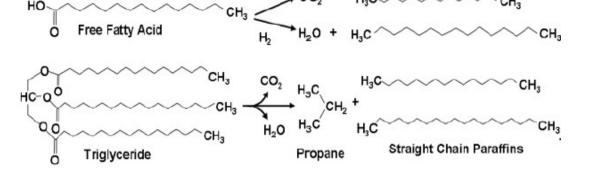
Nr of patents

Publications					
Journal papers	>30				
Conf.Proceedings (ISI Indexed)	12				
Conf.Proceedings	108				
Edited Intern.Conf.Proceedings	3				
Magazines	7				
Thesis	>64				
Studies (EC and Companies)	6				

EU FP7 ITAKA project

ITAKA is a collaborative project, aimed to produce **sustainable renewable aviation fuel** and to test its use in existing logistic systems and in normal flight operations in Europe.

Consortium members include companies and research centers leaders in: feedstock production (**BIOTEHGEN** and **Camelina Company España**); renewable fuel production (**Neste Oil** and **RE-CORD**); fuel logistics (**CLH** and **SkyNRG**); air transport (**Airbus, EADS IW UK, Embraer** and **SENASA**); and sustainability assessment (**EADS IW France, EPFL** and **MMU**).


UNIVERSI

firen

Catalytic conversion route

The main goal consists on the investigation of the best catalytic conversion route through pyrolysis to maximize the production of **bio-intermediate** towards **bio-kerosene** (even as pretreatment for biorefinery).

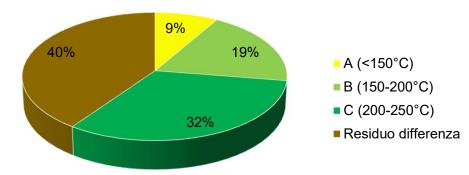
- Kinetic mechanisms of cracking and species formation are strongly dependent by the catalysts adopted in pyrolysis.
- <u>Target</u>: decarboxilation/ decarbonilation of the triglycerides and FFAs molecules.

Triglycerides and FFAs decomposition. Source: AltAir Fuels / UOP.

Distillation test: UCO bio-oil – CAT1*

UNIVERSITÀ
DEGLI STUDI
FIRENZE

	Unit	Distillate A	Distillate B	Distillate C	Residual	Cross-check	Measured
Yield	wt%	0.18	0.24	0.24	0.34	1.00	1.00
с	wt%	81.50	69.70	70.60	78.20	74.93	76.30
н	wt%	12.20	10.20	12.00	11.50	11.43	11.50
0	wt%	6.28	20.07	17.36	10.27	13.61	12.17
N	wt%	0.02	0.03	0.04	0.03	0.03	0.04
Fatty Acids	wt%	0.00	0.03	3.91	19.43	7.55	6.86
Paraffins	wt%	26.69	20.12	21.77	6.28	16.99	14.88
Olefines	wt%	18.77	16.17	13.87	3.58	11.80	11.46
Aromatics	wt%	18.73	6.09	5.75	0.21	6.29	5.80
Ciclo-octene	wt%	3.31	2.47	1.26	0.00	1.49	2.88
Tot. HCs	wt%	67.50	44.84	42.66	10.07	36.57	35.03
%Recognized	wt%	67.50	44.87	46.57	29.50	44.13	41.88



Distillation test: FAs – CAT1**

università degli studi FIRENZE

Yields of separated fractions

Bio-intermediate in the range of kerosene fraction **51%** (B + C)

Distillation test: FAs – CAT1**

UNIVERSITÀ
DEGLI STUDI
FIRENZE

	Unit	Distillate A	Distillate B	Distillate C	Residual	Cross-check	Measured
Yield	wt%	0.09	0.19	0.32	0.40	1.00	0.00
С	wt%	83.43	85.59	86.82	80.68	83.83	83.53
н	wt%	12.27	12.56	12.89	10.34	11.75	12.70
0	wt%	4.21	1.83	0.27	8.96	4.40	3.73
N	wt%	0.09	0.0196	0.0194	0.0196	0.03	0.04
Fatty Acids	wt%	0.04	0.13	2.57	27.54	11.87	15.54
Paraffins	wt%	28.30	35.19	21.00	5.47	18.14	20.00
Olefines	wt%	28.34	16.71	14.50	4.48	12.16	12.46
Aromatics	wt%	16.55	12.14	5.53	0.39	5.72	5.66
Ciclo-octene	wt%	1.48	1.06	2.20	0.00	1.04	2.05
Tot. HCs	wt%	74.68	65.10	43.24	10.34	37.06	40.18
%Recognized	wt%	74.72	65.23	45.81	37.88	48.93	55.72

