Engineering Conferences International ECI Digital Archives

Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes

Proceedings

2015

Synthetic fuels from $3-\phi$ Fischer-Tropsch synthesis using bio-derived gas feed and novel nanometric catalysts

James Aluha Universite' de Sherbrooke

Nadi Braidy Universita' de Sherbrooke

Yongfeng Hu University of Saskatchewan

Ajay Dalai University of Saskatchewan

Nicolas Abatzoglou Universite' de Sherbrooke

Follow this and additional works at: http://dc.engconfintl.org/biorefinery_I
Part of the <u>Chemical Engineering Commons</u>

Recommended Citation

James Aluha, Nadi Braidy, Yongfeng Hu, Ajay Dalai, and Nicolas Abatzoglou, "Synthetic fuels from $3-\varphi$ Fischer-Tropsch synthesis using bio-derived gas feed and novel nanometric catalysts" in "Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes", Nicolas Abatzoglou, Université de Sherbrooke, Canada Sascha Kersten, University of Twente, The Netherlands Dietrich Meier, Thünen Institute of Wood Research, Germany Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/biorefinery_I/2

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Biorefinery I: Chemicals and Materials From Thermo-Chemical Biomass Conversion and Related Processes by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Synthetic fuels from 3-φ Fischer-Tropsch synthesis using bio-derived gas feed and novel nanometric catalysts

James Aluha, Nadi Braidy, Yongfeng Hu, Ajay Dalai and Nicolas Abatzoglou

Biorefinery I: Chemicals and Materials from Thermo-Chemical Biomass Conversion and Related Processes

Chania (Crete), Greece, Sept. 27 – Oct. 2, 2015

Highlights

- 1. Introduction
- 2. Experimental Methods
 - a) Catalyst synthesis
 - b) Catalyst testing (set up and conditions)
- 3. Results and Discussion
 - a) Catalyst testing
 - b) Catalyst characterisation
- 4. Conclusion

Current industrial fuel production competing with petroleum.

FTS polymerises syngas to gasoline ($C_4 - C_{12}$), diesel ($C_{13} - C_{20}$) and waxes (C_{21+}).

Biomass

Atmosphere

Crude oil

BIOFUELNET

Green process: Advantage of biomass application

Fischer-Tropsch Synthesis (FTS): a targeted technology for biofuel production from renewable resources.

Target		Reaction	Designation
Alkanes	(2n+1) H ₂	+ n CO \rightarrow C _n H _{2n+2} + n H ₂ O	Eqn. (1)
Alkenes	$2n H_2$	+ n CO \rightarrow C _n H _{2n} + n H ₂ O	Eqn. (2)
Water-gas shift	H ₂ O	+ CO \rightarrow CO ₂ + H ₂	Eqn. (3)
Methane	3 H ₂	+ CO \rightarrow CH ₄ + H ₂ O	Eqn. (4)
	4 H ₂	+ $CO_2 \rightarrow CH_4$ + $2H_2O$	Eqn. (5)
Alcohols	2n H ₂	+ n CO \rightarrow C _n H _(2n+1) OH + (n-1) H ₂ O	Eqn. (6)
	(n+1) H ₂	+ (2n-1) CO \rightarrow C _n H _(2n+1) OH + (n-1) CO ₂	Eqn. (7)

In this project, the target syngas source = Biomass

Properties of a choice catalyst include:

- High surface area; low porosity
- Nanometric = No diffusion limitations
- Inert support = carbon
- Metallic Co or Fe-carbides species

Plasma technology to provide the impetus towards process efficiency in catalyst synthesis because it is a single step process.

VS.

- In previous work, plasma-synthesised Fe/C catalyst performed better than commercially available nano-hematite (Fe-Nanocat[®]): 24 h activation by CO reduction^(a)
 - Temperature = 220°C
 - Pressure = 31-bar (~ 450 psi)
 - GHSV = 2, 575 ml.g_{cat}⁻¹.h⁻¹
- ^(a)J. Blanchard, N. Abatzoglou, R. Eslahpazir-Esfandabadi and F. Gitzhofer, *Ind. Eng. Chem. Res.*, 49 (2010) 6948.

EXPERIMENTAL

Catalyst Synthesis by Plasma:

Suspension of 60 g metal in mineral oil was introduced into plasma to produce various compositions

- Co/C
- Fe/C
- 30%Co-70%Fe/C
- 50%Co-50%Fe/C
- 80%Co-20%Fe/C
- 70%Co-20%Fe-10%Mo/C
- 70%Co-25%Fe-5%Ni/C
- Doped with 5%Au: 70%Co-25%Fe-5%Ni/C.

EXPERIMENTAL

Catalyst Testing: Fischer-Tropsch conditions

- (i) Reducing conditions:
 - 5.0 g Catalyst
 - T = 400°C
 - \circ P = 1-2 bar (abs)
 - \circ Gas = pure H₂
 - \circ Flow rate = 250 ml.min⁻¹
 - Time = 24 h
- (ii) Add solvent: 150 ml (C₁₆)

(iii) Reaction: Regimes to avoid:

- 1. High CH_4 and H_2O selectivity
- 2. Mass transfer limitations

EXPERIMENTAL

Catalyst Testing: Slurry CSTR

Reaction conditions:

- Temperature = 220-260°C;
- Pressure = 20-bar
- Stirring rate = 2,000 rpm
- Gas composition = 60%H₂; 30%CO; 10%Ar
- H₂:CO ~ 2:1 ratio
- Flow rate = 300 ml.min^{-1}
- GHSV = 3,600 ml.g_{cat}⁻¹.h⁻¹
- Test time: = 24 h on stream.

Mass Balance: CO conversion (%) = $\left[\frac{CO_{in}-CO_{out}}{CO_{in}}\right] x \left[\frac{Ar_{in}}{Ar_{out}}\right] x 100^{(b)}$

^(b) M.C. Bahome, L.L. Jewell, D. Hildebrandt, D. Glasser, N.J. Coville, *Appl. Catal. A: Gen.*, 287 (2005) 60.

Summary I: Unique Catalyst Properties

- 1. Catalysts are non-porous
- 2. There is uniform distribution of metal in the carbon matrix
- 3. No sintering occurs during use in Fischer-Tropsch reaction

Catalyst Characterisation: BET surface area

- Material = non-porous (no hysteresis)
- Micro-porosity an effect of nano-particles packing

Catalyst Characterisation: BET surface area

- Material = non-porous
- Micro-porosity an effect of nano-particles packing

Catalyst Characterisation: SEM imaging

Secondary image

Backscattered image

30%Co-70%Fe/C

Catalyst Characterisation: SEM

• X-ray imaging: Uniform metal distribution

300 nm

(a) 50%Co-50%Fe/C • = Co • = Fe (b) 80%Co-20%Fe/C

750 particles measured Mean ≈ 11 nm

Key:

- 1a = Metal nano-particle
- 1b = Nano-particle with stacking faults
- 2a = Carbon matrix (amorphous); disordered
- 2b = Graphitic sheets
- 2c = Folded graphitic sheet

Summary II: Catalyst Performance

- Activity: Highly active for Fischer-Tropsch synthesis;
 Co/C better than the commercial one
- **2. Selectivity**: Favourable towards gasoline and diesel fractions
- **3. Low-Temperature Operation**: Single metals catalysts **High-Temperature Operation**: Bimetallics are better

Catalyst Characterisation: TEM (used Fe-NanoCat)

Catalyst Characterisation: XANES

Catalyst Selectivity: Single metals at 220°C

Catalyst Activity: Single metals at 260°C

Catalyst Selectivity: Single metals at 260°C

- Problem: Excessive CH₄ and CO₂ formation by single metal catalysts at high temperatures
- **Solution**: Co-Fe/C bimetallics

Summary III: The Bimetallic Effect

- **1. Activity**: Poor reaction (low conversion) at low temperatures
- **2. Particle size**: Increases at 50%Co-50%Fe composition due to alloys formation = most of them CoFe crystallites
- **3. Water-gas shift**: More Fe (%) means less H₂O production; but more CO₂

Catalyst Testing: Activity at 220° and 260°C

Catalyst Selectivity: Overall (at 260°C)

Catalyst Characterisation: XRD

XRD by Rietveld Quantitative Analysis (RQA)

Summary IV: Promotion with Mo & Au

- **1. Effect of Au**: Lowers FTS activity; we expected Au-Ni-Fe to enhance water gas shift reaction^(c)
- **2. Effect of Mo**: Surface acidity (+Mo) improves selectivity towards diesel fraction, low CO conversions (activity)

^(c) A. Venugopal, J. Aluha, M.S. Scurrell, *Catal. Lett.*, 90 (Issue 1 – 2) (2003) 1.

• Au depresses catalyst activity: less products formed.

Selectivity: Promotion with Mo & Au

Characterisation: TEM (used catalysts)

CONCLUSION

- 1. All catalysts have capacity to produce both gasoline and diesel fractions depending on composition and reaction conditions.
- 2. Catalysts have uniform distribution of metal in the carbon matrix.
- 3. Non-porous catalysts are excellent in dealing with mass transfer limitations.
- 4. No sintering occurs during use in Fischer-Tropsch reaction.
- 5. Plasma synthesis produces significant amounts of Fe-carbides (Fe₃C, Fe₅C₂) responsible for FTS catalysis.

GRATITUDE

This research is funded by BioFuelNet Canada, a network focusing on the development of advanced biofuels and associated bioproducts.

BioFuelNet is a member of the Networks of Centres of Excellence of Canada program. Website: www.biofuelnet.ca

CCM Staff: (Centre for Characterisation of Materials) Prof. François Gitzhofer Dr. Kossi Bere Mr. Henri Gauvin Catalysis Group

Canadian Centre canadien Light de rayonnement Source synchrotron

Prof. Yongfeng Hu

Catalyst Selectivity: Only the 80%Co-20%Fe/C was active at both temperatures

Metal particle size distribution:

