Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

Proceedings

Spring 4-14-2015

Characterization of Ultra High Temperature Ceramic Coatings Deposited by Vacuum Plasma Spraying

Diletta Sciti *UHTCMCs: short vs continuous fibers, Italy*

Yeon Woo Yoo Surface Technology Division Korea Institute of Material Science KIMS

Sea Hoon Lee Surface Technology Division Korea Institute of Material Science KIMS

Follow this and additional works at: http://dc.engconfintl.org/uhtc-iii Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Diletta Sciti, Yeon Woo Yoo, and Sea Hoon Lee, "Characterization of Ultra High Temperature Ceramic Coatings Deposited by Vacuum Plasma Spraying" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III", G. Franks and C. Tallon, University of Melbourne Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/uhtc-iii/11

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Characterization of Ultra High Temperature Ceramic Coatings Deposited by Vacuum Plasma Spraying

Yeon Woo Yoo^{*}, Uk Hee Nam, Sea Hoon Lee, Eungsun Byon Surface Technology Division Korea Institute of Materials Science (KIMS)

Contents

Introduction

- Materials for Extreme Environment Applications
- UHTC Coatings
- Thermal Spraying & Vacuum Plasma Spraying

Experimental

Results and Discussion

- Properties of TaC Coatings Deposited by Vacuum Plasma Spraying at Various Condition
- Properties of HfC Coatings Deposited by Vacuum Plasma Spraying at Various Condition

Summary

Materials for Extreme Environment Applications

Refractory Metals

- High temperature strength
- Good wear & erosion resistance
- Low oxidation resistance
- High density
- High cost

Carbon

- High mechanical strength
- Highest melting temperature
- Low density
- Vulnerable to oxidation at low temperature

Ceramic Matrix Composites (SiC)

- High mechanical strength
- High oxidation resistance below 1700 °C
 (Formation of SiO₂ glass on the surface)
- Low density

Ultra High Temperature Ceramics

- High melting temperature (up to 3000 °C)
- Good chemical stability at high temperature
- Easily oxidized
- High density

Why UHTC Coatings?

- UHTC monoliths weigh too much because of their high density.
- UHTC coatings can reduce the weight.

What Is Thermal Spraying?

Vacuum Plasma Spraying (VPS)

Experimental

- Experimental Conditions
- Feeding powder : TaC and HfC powders
 (size distributed)
- Substrate : Sintered ZrB₂ monolith
- Various working pressure
- Various carrier gas flow

- Primary gas : Ar
- Secondary gas : H₂
- Ar to H_2 ratio : 10 to 3
- Atmosphere gas : N₂

Microstructure of TaC Coatings at Various Carrier Gas Flow

- TaC coatings adhered well to surface of ZrB₂ substrates.
- The highest deposition rate and lowest porosity TaC coating was obtained through proper carrier gas flow level.

Working pressure – 150 mbar

0.0

0.5

1.0 Carrier gas flow [L/min]

Crystal Structure of TaC Coatings at Various Carrier Gas Flow

1.5

2.0

- Decarbonization of TaC occurred during plasma spraying.
- TaO formed during spraying.
- Oxidation of TaC occurred well when carrier gas flow level was not enough for injecting powders into the flame.

Microstructure of TaC Coatings at Various Working Pressure

- As changing working pressure, the shape of plasma flame changes.
- Flatter splats were deposited in lower working pressure because of bigger plasma flame.

Crystal Structure of TaC Coatings at Various Working Pressure

80

Content of TaC slightly increased as decreasing the working pressure.

XPS analysis of TaC Coatings

Microstructure of HfC Coatings at Various Working Pressure

- Carrier gas flow 0.6 L/min
- As increasing the working pressure during HfC spraying, the coating thickness decreased.
- The deposition rate and porosity of HfC coatings decreased compared to TaC coatings.

01

50

100

Working pressure [mbar]

150

200

Crystal Structure of HfC Coatings at Various Working Pressure

- 14 -

Microstructure of HfC Coatings at Various Spraying Distance

- Working pressure 50 mbar
- Porous HfC coatings were deposited when spraying distance was not enough.
- No big difference of deposition rate between various spraying distance.

Crystal Structure of HfC Coatings at Various Spraying Distance

80

As increasing spraying distance, the content of HfO₂ decreased.

XPS analysis of HfC Coatings

- The portion of oxide in HfC coating increased when spraying distance decreased.
- HfC coating deposited at low working pressure showed lower oxide content.

Summary

TaC Coatings Deposited by VPS

- TaC coatings with TaO and Ta₂C were deposited by VPS
- Enough carrier gas flow was key parameter for reducing oxidation of TaC.
- Deposition TaC coating at low working pressure decreased carbon loss and made flatter splats.

HfC Coatings Deposited by VPS

- HfC coatings with various phases of HfO₂ were deposited by VPS.
- Coatings deposited at low working pressure showed lower oxide content.
- More oxide content in HfC coatings deposited when spraying distance is shorter than significant distance.

Comparison between Two Carbide Coatings

- TaC coatings showed that easier to oxidize than HfC coatings.
- Deposition rates of TaC coatings were higher than those of HfC coatings.
- TaC coatings showed more porous microstructure than HfC coatings.

Thank you for your attention!

