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Background - Ultra High Temperature Ceramics

Prospective applications

・Poor sinterability and workability

↳Several borides, carbides, and nitrides
    of the group Ⅳ and Ⅴ metals

Excellent properties

・High melting points（> 3000℃）
・Good thermo-mechanical properties
・Chemical stability

Problems

It is difficult to produce the large and complex shaped parts of UHTCs.

For the practical use, an effective method of bonding will be required.

 UHTCs：Ultra High Temperature Ceramics

Ti, Zr, Hf, Ta -B2, -C, -N

B atoms in a structural complex leads to increases in the B–B
bond strength and an increase in the stiffness of the crystal lat-
tice along with increases in melting temperature (Tm), hardness
(HV), strength (s), and chemical stability.

TheM–B bond strength in diborides depends on the degree of
electron localization around the M atoms. The valence electron
configuration in isolated B atoms is 2s22p. In metal borides, the
outer electron configurations are sp2 and sp3, which promote
strong covalent bonding. In diborides, B atoms are electron ac-
ceptors, while the M atoms are electron donors. Each M atom
donates two electrons (one to each B), which converts M to a
doubly charged cation, while B atoms become singly charged
anions. So, theMB2 formula can be expressedM21(B!)2.

31,32,40–45

The electron configurations vary depending on the donor prop-
erties of M, which produces a diversity of crystal structure types
and properties. The M–B bonds have ionic characteristics as a
result of the donor–acceptor interactions, but they also have
covalent characteristics due to partial excitation of d electrons
and the formation of spd hybrid configurations. The tendency
for B atoms to form sp2 and sp3 hybrids also affects properties.

However, hardness and brittleness are lower than the corre-
sponding carbides because the B structural complexes combine
sp3 hybridization with the lower-strength sp2 (and even lower-
strength s2p and sp) configurations, whereas the carbon atoms in
carbides exhibit only sp3 hybridization.

As shown in Fig. 2, the crystal structure of Group IV–VI
transition metal diborides is primitive hexagonal (AlB2-type,
P6/mmm space group). The unit cell contains one MB2 formula
unit. The structure is composed of layers of B atoms in 2D
graphite-like rings or nets, which alternate with hexagonally
close-packed M layers. Each M atom is surrounded by six equi-
distant M neighbors in its plane and 12 equidistant B neighbors
(six above and six below the M layer). Each B is surrounded by
three B neighbors in its plane and by six M atoms (three above
and three below the B layer).

The unit-cell parameters and interatomic distances for dibor-
ides are summarized in Table II. In general, B–B separation
controls the a-axis length. However, the a-axis length is also af-
fected by M–B contact. For ZrB2, which has the largest M atom
of the diborides, the B–B distance is 1.83 Å (a/O3), which ex-
ceeds the ‘‘normal’’ B–B distance (1.74 Å) by 0.09 Å due to
stretching of the B–B bonds by Zr–Zr contact. Likewise, the
smallest M atoms (Cr, V) lead to reductions in the B–B distance.
From crystal chemical considerations, the length of the a-axis is
a balance between two forces: (1) repulsion between atoms in the
M layers and (2) attraction between atoms in the B nets.26,29,30

As a result, stable AlB2-type diborides do not form for M atoms
smaller than Cr or larger than Zr. The B–B bond length for
minimum strain in the boron nets has been estimated to be
B1.75Å, which is the value for TiB2.

29

The M–B distance in diborides increases linearly with the
M:B radius ratio, increasing from 2.30 Å for CrB2 to 2.54 Å for
ZrB2. The M–B separation is equal to ða2=3þ c2=4Þ1=2, which is
larger than the sum of the M and B radii (Table II). Generally,
the structural data indicate that bonding in the B nets controls
the lattice parameters in the AlB2-type structure. Because the B–
B bonds are strong relative to the other bonds, increases in the a-
axis with increasing M size are minimal. In contrast, no such
effect is observed for the c-axis. Hence, the c:a ratio increases
with increasing M atom size. Owing to separation of the close-
packed M planes by B nets, the c-axis is always substantially
larger than 2RM. In summary, differences among diborides re-
sult from different M radii, which lead to variations in the in-
teratomic bond lengths. Larger changes are observed for the c-
axis than for the a-axis due to the relative bond strengths.

(2) Structure-Property Relations

Hardness, bulk modulus, Debye temperature (YD), Tm, coeffi-
cient of thermal expansion (CTE), thermal conductivity (k), and
enthalpy of formation ðDHo

f Þ are some properties that are re-
lated to bond strength (cohesive energy). Generally, the combi-
nation of bonds (M–M, B–B, and M–B) influences the material
properties. However, in some cases, a specific type of bond con-
trols a property.31 For example, B–B and M–B bonds in dibor-
ides control hardness and thermal stability. Hardness is,
therefore, a qualitative indicator of bond strength.47

The thermal and elastic properties of diborides are summar-
ized in Table III.48–54 The data indicate that the Group IV di-
borides have lower CTE and higher Young’s modulus and
thermal conductivity than Group V diborides.26 The property
changes suggest that B–B bonds are strongest for Group IV at-
oms (Ti, Zr, and Hf) and the bonds weaken as atomic number
increases across a period of the Periodic Table. Grimvall and
Guillermet46 found it useful to correlate cohesive energy and Tm

trends to the average number of valence electrons per atom for
isostructural diborides. For example, the series ScB2, TiB2, VB2,
CrB2, MnB2, and FeB2 have 9, 10, 11, 12, 13, and 14 valence
electrons, respectively. With its 10 valence electrons (3.3 elec-
trons per atom), TiB2 possesses the highest melting temperature
of the group. Higher or lower numbers of valence electrons re-
sult in lower melting temperatures.

Fig. 1. A comparison of the melting temperatures of the most refrac-
tory members of several classes of materials. Several borides, carbides,
and nitrides have melting temperatures above 30001C and are considered
ultra high-temperature ceramics. For comparison, the melting tempera-
ture of Zr is B18501C and the melting temperature of Hf is B22271C.

Table I. Summary of Some Structural, Physical, Transport,
and Thermodynamic Properties of ZrB2 and HfB2

Property ZrB2 HfB2

Crystal system space group
prototype structure

Hexagonal5

P6/mmm AlB2

Hexagonal6

P6/mmm AlB2

a (Å) 3.17 3.139
c (Å) 3.53 3.473
Density (g/cm3) 6.1195 11.2126

Melting temperature (1C) 32451 33801

Young’s modulus (GPa) 4899 48011

Bulk modulus (GPa) 215 212
Hardness (GPa) 239 287

Coefficient of thermal
expansion (K!1)

5.9% 10!6 7 6.3% 10!6 7

Heat capacity at 251C
(J & (mol &K)!1)

48.28 49.57

Electrical conductivity (S/m) 1.0% 107 7 9.1% 106 7

Thermal conductivity
(W & (m &K)!1)

607 1049

Enthalpy of formation at
251C (kJ)

!322.68 !358.17

Free energy of formation at
251C (kJ)

!318.28 !332.27

1348 Journal of the American Ceramic Society—Fahrenholtz et al. Vol. 90, No. 5

William G. Fahrenholtz et al. : J. Am. Ceram. Soc., 90 [5] 1347–1364 (2007)
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Background - Typical methods of ceramics bonding

Transient Liquid Phase (TLP) bonding

Typical examples of ceramics bonding

Metal
Ceramics

Ceramics

Metal brazing 
bonding

Low melting metal

Oxide solder 
bonding

Ceramics

Ceramics

B
Zr

Solid state 
bonding

High temperature 
and

 high pressure
↓

Cost ✕

Oxide

Bad wettability↓
 Heat resistance ✕ ↓

Adhesion ✕ 

Ceramics

Ceramics
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Background - TLP (Transient liquid phase) bonding

➀ The cladding metals will melt and fill the gap between the ceramics and the core metal. 
➁ The liquid cladding metals will diffuse through the core metal.
➂ The interlayer will have higher re-melting temperature than the bonding temperature. 

A low cost and well-trusted bonding method at high temperature use

Ceramics�

Ceramics�

Refractory 
core metal�

Cladding low melting point metals 

In
se

rt 
m

et
al

s
TLP bonding

     Cladding low melting metal       

➀
➁ ➂
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Objective

The TLP bonding using Ni-Nb interlayer was successfully 
applied to bond HfB2 composite in our previous work.(1)

The adequate thickness of the interlayers of the joints is 
needed to explore.

The present work aimed at investigating the effect of Ni-Nb interlayer
thickness on the mechanical properties of HfB2 composite joints.

(1)Noritaka Saito:J.Mater.Sci, 47, 8454-8463(2012)

Interlayer
Ni-Nb

HfB2 composite joints

Objective
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Experimental procedure- Fabrication of HfB2 composites

Raw powders

Polishing

Sintering

Milling and Mixing

Uniaxial pressing
+300 MPa CIPing 

1950℃ for 1 h
Under 0.1 MPa Ar 

with diamond slurry

ZrO2 milling media for 24 h in ethanol

Molding

Relative density
97.6% 

2 μm

Microstructure of HfB2 compositeMicrostructure of HfB2 composite

Bonding
HfB2 MoSi2

HfB2 (2 μm, 99.5%) + 10 vol% MoSi2 (-2 μm, 99.9%)
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Experimental procedure- Fabrication of HfB2 composite joints

Atmosphere: 20 Pa Vacuum
Temperature: 1500°C
Holding time: 30 min
Applied pressure: 8.5 MPa

Quenching

• The interfacial region of joints were observed by using FE-SEM.
• The mechanical properties of joints were evaluated by 4-points bending test.

Hot pressing

Interlayer

Cladding metal: Ni
Core metal: Nb

Sample A

HfB2

composite

HfB2

composite

NbNb

NiNi

NiNi

Ni2 μm

Ni2 μm

Ni127 μm

Ni : 0.40 μm

NbNb 25.4 μm

Sample B
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Observation results of interfacial reaction

15年5月7日木曜日



(Nb,Hf)3B2NbNiSi(Nb,Hf)2NiSiNb5Si3

Reaction
layer

10 μm
H

fB
2

Sample A N
b

Nb
20:27 at%

5μm
36:24 at%

Interfacial microimage of sample A (Nb : 127 μm, Ni : 2 μm)

・The interdiffusion of Ni and Nb was not completed. 
・The reaction layer mainly contained Si from MoSi2 sintering aid. 
・The HfB2 composites hardly reacted to the interlayers.

Nb-Ni-Si

Nb

HfB2 composite

Nb-Si13
0 
μm
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H
fB

2
N

b ss

Reaction
layer

20 μm
Sample B

(Hf,Nb)2Ni(Nb,Hf)5Si2(Nb,Hf)3B2 Nb5Si2 (Nb,Hf,Mo)
45:16 at% 76:16:8 at%62:9 at% 51:17 at%

Interfacial microimage of sample B (Nb : 25.4 μm, Ni : 0.40 μm) 

Nb solid solution

5μm

Nb-Hf-Ni

・The interdiffusion of Ni and Nb was not completed similar to Sample A.  
・The reaction layer contained Si and Hf from HfB2 composite.

50
 μ

m

HfB2 composite

Nb-Hf-Si
Nb-Hf-B
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Discussion on the interfacial reaction of sample A

HfB2 composite

Nb

Ni
Nb-Si

Nb

Nb-Ni-Si

Nb-Hf-B

Before bonding After bondingDuring heating

HfB2 composite

➀ Enough amount of Ni-Nb melt was formed, and filled the gap between Nb and 
HfB2 composite. 
➁ Nb and Si diffused into the other side respectively.
➂ The thick reaction layer was formed uniformly. 

Ni-Nb melt➀

Nb

Si

➁ ➂
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Discussion on the interfacial reaction of sample B

➀ Smaller amount of Ni-Nb melt was formed. 
➁ Nb directly touched and reacted with HfB2 composite. 
➂ The reaction layer was formed complexly. 

Nb-Ni melt➀

➁ ➂

Nb

Ni
HfB2 composite

Nb ss

Hf-Nb-Ni

Nb-Hf-B 
Nb-Hf-Si

HfB2 composite

Before bonding After bondingDuring heating
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Ni-Nb melt

Nb-Ni melt

Sample A Sample B

Difference in the interfacial reaction is due to the difference 
in the amount of Ni-based melt.

Summary of interfacial reaction

HfB2  composite

Nb

HfB2  composite

Nb
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4-points bending test
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Electrical discharge machining
2 mm ×2.5 mm ×25 mm

Cutting

Bonding

Polishing

Strength measurement 
at R.T. and at H.T. (1000℃)

4-points bending test

Electrical discharge machining

φ10mm 

2mm 

2.5mm 

HB10M 

HB10M 

with diamond slurry

Fabrication process of bending beams for 4-points bending test

B

BBBBBB
BBBBBB

2 mm 

2.5 mm 

  HfB2  

φ10 mm

m
m

m

  HfB2  
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l: 10 mm

L: 20 mm

25 mm

w: 2.5 mm

t: 2 mm

Pressure Pressure

3P(L-l)

2wt2
σ=

Bending stress (MPa)
Maximum Load (N)
Loading span (mm)
Support span (mm)
Width (mm)
Thickness (mm)

σ
P
l
L
w
t

:
:
:
:
:
: Crosshead speed ：1mm/min

Number of Trials ：3 times

Conditions  ：1000°C in air

Crosshead speed ：1mm/min

Number of Trials ：5 times

R.T. tests for Joints

H.T. tests for Joints

R.T. tests for HfB2 Composite

Crosshead speed ：1mm/min

Number of Trials ：12 times

Experimental procedure of 4-points bending test
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Result and discussion of 4-points bending test

0"

100"
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300"
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Joint Sample

398 MPa

A
(R.T.)

A
(H.T.)

B
(H.T.)

B
(R.T.)

H.T.：1000°C

600

500

400

300

200

100

0

462 ± 45.7 MPa
HfB2 Composite at R.T.
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B
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B
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H.T.：1000°C

600

500

400

300

200

100

0

comparable strength

Result and discussion of 4-points bending test

SampleA and Sample B had similar strength, and had comparable strength with HfB2 
composite strength at R.T.

462 ± 45.7 MPa
HfB2 Composite at R.T.
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・From SEM observation of the fracture surfaces, similar Nb-Si were found. 

・Ductile metal Nb would decrease the influence of residual stress in the cooling period of the 
bonding process.

Result and discussion of 4-points bending test

5μm

5μm

Sample A Sample B

Nb5Si3 Nb5Si2

SampleA and Sample B had similar strength, and had comparable strength with HfB2 
composite strength at R.T.

15年5月7日木曜日



0"

100"

200"

300"

400"

500"

600"

0" 0.5" 1" 1.5" 2" 2.5" 3" 3.5" 4"

412 MPa

337 MPa

187 MPa

Be
nd

in
g 

St
re

ng
th

 (M
Pa

)

Joint Sample

398 MPa

A
(R.T.)

A
(H.T.)

B
(H.T.)

B
(R.T.)

H.T.：1000°C

600

500

400

300

200

100

0

Result and discussion of 4-points bending test

In Sample A,  the H.T. strength was slightly decreased compared with the R.T. strength.
In Sample B,  the H.T. strength was significantly decreased. 

462 ± 45.7 MPa
HfB2 Composite at R.T.
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Nb7Ni6+Nb2Ni6

Result and discussion of 4-points bending test

・Some intermetallics phases of Ni-Nb were found.

・These Ni-Nb intermetallics have relatively low melting temperature. 

・The presence and softening of these intrmetallics would be a possible reason why the 
H.T. strength of Sample B was found to be small.

In Sample A,  the H.T. strength was slightly decreased compared with the R.T. strength.
In Sample B,  the H.T. strength was significantly decreased. 
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・HfB2 composite joints were well-bonded by TLP bonding using Ni-Nb interlayer.

・Different thickness of Ni-Nb interlayer caused different reaction in the interfacial region.

・The different reaction was due to the difference in the amount of Ni-based melt. 

・Two kinds of the joints revealed the similar strength at room temperature because similar 
Nb-Si was formed on the interfacial region regardless of the different reaction.

・Because Ni-Nb intermetallics have relatively low melting temperature, the intermetallics
 would significantly decrease the high temperature strength of the joints bonded with small 
amount of Ni.

The present work aimed at investigating the effect of Ni-Nb interlayer
thickness on the mechanical properties of HfB2 composite joints.

Summary
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Thank you !
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