Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

Proceedings

Spring 4-13-2015

Synthesis and Static Oxidation Testing of Doped Hf B2 Powders

Pengxiang Zheng Loughborough University

Jon Binner University of Birmingham

Bala Vaidhyanathan Loughborough University

Follow this and additional works at: http://dc.engconfintl.org/uhtc-iii Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Pengxiang Zheng, Jon Binner, and Bala Vaidhyanathan, "Synthesis and Static Oxidation Testing of Doped HfB2 Powders" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III", G. Franks and C. Tallon, University of Melbourne Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/uhtc-iii/8

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

UNIVERSITY^{OF} BIRMINGHAM

Synthesis and Static Oxidation Testing of Doped HfB₂ Powders

Pengxiang Zheng, Jon Binner* and Bala Vaidhyanathan

Loughborough University *University of Birmingham UK

© 2015 University of Birmingham

The information in this document is the property of The University of Birmingham and may not be copied or communicated to a third party, or used for any purpose other than that for which it is supplied without the express written consent of The University of Birmingham.

Problems with HfB₂ Ceramic Oxidation

 HfB_2 oxidises to HfO_2 readily; whilst not a problem in itself, like ZrO_2 , HfO_2 undergoes a phase transformation with an associated volume change that opens up porosity.

Phase transformation of the oxide product of HfB₂

One solution is to dope the HfB₂ so that on oxidation it forms stabilised, tetragonal HfO₂

UNIVERSITYOF

Dopant Selection

Compound	Melting point /°C	Crystal structure	Covalent radius of the metal atom / pm
HfB ₂	3250	Hexagonal	175±10
YB ₄	2150	Tetragonal	190±7
TaB ₂	2850	Hexagonal	170±8
LaB ₆	2250	Cubic	207±8
MgB ₂	830	Hexagonal	141±7

 ${\rm TaB_2}$ was chosen because of its similar crystal structure and atomic radius to that of ${\rm HfB_2}$

UNIVERSITY^{OF}

Addition of Ta-Dopant

Materials Systems for Extreme Environments

Ta-Doped HfB₂ Powder

10 wt% Ta-doped HfB₂ powder

EDX mapping shows the Ta distributed homogeneously. The particle size was $\sim 0.5 \ \mu m$, but the final product contained hard agglomerates.

UNIVERSITY OF

BIRMINGHAM

Loughborough University

Hf

Та

XRD of Ta-Doped HfB₂ Powder

UNIVERSITYOF

BIRMINGHAM

All the peaks correspond to HfB_2 confirming the formation of (Ta,Hf)B₂ solid solution

Loughborough University

6

Lattice Parameter of Pure and Doped HfB₂

2 theta / degree

Lattice parameter	HfB ₂ (literature)	HfB ₂ (this study)	5% TaB ₂ - doped HfB ₂	10% TaB ₂ - doped HfB ₂	15% TaB ₂ - doped HfB ₂	TaB ₂
a / nm	0.3141	0.3142	0.3140	0.3139	0.3138	0.3088
c / nm	0.3470	0.3470	0.3468	0.3466	0.3464	0.3241

UNIVERSITYOF

XRD Results after 1600°C Oxidation of Powder

After 1600°C oxidation, pure HfB_2 yielded entirely monoclinic HfO_2 whilst the 10%TaB₂-doped HfB_2 gave almost phase pure tetragonal HfO_2 .

UNIVERSITYOF

XRD Results after 1600°C Oxidation of Powder

After 1600°C oxidation, pure HfB_2 yielded entirely monoclinic HfO_2 whilst the 10%TaB₂-doped HfB_2 gave almost phase pure tetragonal HfO_2 .

UNIVERSITYOF

Modelling

Predicted: recession rates, scale thicknesses, weight gain (all validated against expts)

Phase transformation of ZrO₂ and HfO₂ plays a significant role (increases pore volume)

TA Parthasarathy

Loughborough University

Modelling

LoughboroughUniversity

XMat Materials Systems for Extreme Environments

- Peak shifts shows that Ta atoms remain in solid solution
- > No residual TaB₂ in the 15 wt% Ta-doped HfB₂ sample

UNIVERSITYOF

BIRMINGHAM

13

Samples	Density / g cm ⁻³	Relative density
Treibacher HfB ₂	9.83	93.62%
0 wt% Ta-doped HfB ₂	8.93	85.04%
5 wt% Ta-doped HfB ₂	9.24	87.73%
10 wt% Ta-doped HfB ₂	9.36	88.59%
15 wt% Ta-doped HfB ₂	9.55	90.12%

UNIVERSITY OF

BIRMINGHAM

Theoretical value for HfB ₂	10.50
Theoretical value for TaB ₂	11.15

The addition of Ta improves the sinterability of HfB₂

Treibacher HfB₂

0 wt% Ta-doped HfB₂

15 wt% Ta-doped HfB₂

5 wt% Ta-doped HfB₂

*The addition of Ta improves the sinterability of HfB*₂

LoughboroughUniversity

XMat Materials Systems for Extreme Environments

Compositional Analysis

C K series

10 wt% Ta-doped HfB₂

Ta homogeneously distributed.

Carbon was found in all the samples (including the commercial HfB_2). It is probably from the protective graphite sheet used for SPS.

10µm

Ta-Doping of HfB₂ – Summary & Future Work

- > High purity, sub-micron (~0.5 μ m) Ta-doped HfB₂ has been synthesized.
- > The 10 wt% Ta-doped HfB_2 was able to almost fully stabilize HfO_2 in the tetragonal phase after oxidation of the powder at 1600°C.
- > The addition of Ta-dopants improve the sinterability of HfB_2 .
- ➢ In order to achieve higher density, the 10 wt% Ta-doped HfB₂ powders will be SPSed at 2400°C and 500 MPa at QML.
- Samples with satisfactory density (>98%) will be oxidized to investigate TAPs' model.

Thank You

18

