#### Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

Proceedings

Spring 4-13-2015

# Ultra-High Temperature Mechanical Properties of Zirconium Diboride-Based Ceramics

W.G. Fahrenholtz Missouri University of Science and Technology

G.E: Hilmas Missouri University of Science and Technology

Follow this and additional works at: http://dc.engconfintl.org/uhtc-iii Part of the <u>Materials Science and Engineering Commons</u>

#### **Recommended** Citation

W.G. Fahrenholtz and G.E: Hilmas, "Ultra-High Temperature Mechanical Properties of Zirconium Diboride-Based Ceramics" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III", G. Franks and C. Tallon, University of Melbourne Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/uhtc-iii/6

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.



## Ultra-High Temperature Mechanical Properties of ZrB<sub>2</sub>-Based Ceramics

W.G. Fahrenholtz and G.E. Hilmas

Missouri University of Science and Technology Rolla, MO USA



#### Acknowledgement

- Dr. Eric Neuman
  - Dissertation research
- Drs. Jeremy Watts, Harlan Brown-Shaklee, and Eric Neuman
  - Building UHT mechanical testing system
- This project was funded by the U.S. Air Force Office of Scientific Research Aerospace Materials for Extreme Environments Program Grant number FA9550-09-1-0168





#### MISSOURI **SATHigh Melting Temperature Materials**

법운 30 ⊢ nitrides NbC specific gravity 0 silicides orides ZrC 3500 € sulphides silicates Ta,C catoldes ide HfN Re HfB, ThO, 5 ပ္ TaB. ure, TaN 0s ZrB, Melting Tempera ŦſŇ ReW Re,W UO, HfÓ, TIB, 2 WC W.C 3000 S.V. Ushakov and A. 2000 WB. melting temperature °C Navrotsky, "Experimental ZrB vc Re<sub>2</sub>Ti, SIC ZrO, Mn,B, Approaches to UN ThN ThC, ThC Ta.B. CaO Thermodynamics above Mo BeO UB, LaB, OsTa, PrC, 1500°C," Journal of the Ta,Si, 2500 ← •Ru Sc.O, WPt Hf.Si. CeS American Ceramic llr. 腦 r,Nb Y,O, B,C Nb,N AlN Nb Society, 95(5) 1463-1482 W,Si, ♦lr,Ti UC, La,O, ThS HfMo, Cr,O, Hf,Si, Sr,SiO, NdB NbN VN Zr,Si, ThB, Mo,B CeB, PrS B Hf GdC, Gd.O. TaSi, OsTi Mo.A V,C HfS V,Si, Ca,SiO, IrTa Ni,C Th,N, MgAl<sub>s</sub>O, Al<sub>s</sub>O, Pr,S, Mo,Si, RuZr Mg,SiO, CrB La,C, Ta,N AI,Mo MoSi 2000 < Borides Elements Carbides Oxides Silicates Silicides Sulfides InterMe Nitrides

(2012).





### **Motivation and Purpose**

#### Intrinsic properties

- Measuring is simple conceptually, but difficult in practice
- Thermal conductivity
  - Impurity effects
  - Lack of single crystals
- Heat capacity
  - Historic data are inaccurate

Systematically study the mechanical behavior of ZrB<sub>2</sub>-based ceramics at ultra-high temperatures





## **Historic Strength Studies**



Development of Oxidation-Resistant Diborides: Mechanical Properties" AFML-TR-68-190 Part II, Vol IV.



- Limited studies of ZrB<sub>2</sub> at elevated temperatures
- ZrB<sub>2</sub> strength decreases as grain size increases
- Diffusional creep limits strength at the highest temps





- More studies than pure ZrB<sub>2</sub>, but few over 1600°C
- ZrB<sub>2</sub>-SiC eutectic at 2270°C limits upper use temperature



- Disilicide additions can improve strength compared to SiC
- No studies of ZrB<sub>2</sub> with silicides above 1500°C
- Use limited by T<sub>melt</sub> (MoSi<sub>2</sub> 2030°C; TaSi<sub>2</sub> ~2200°C)



#### MISSOURI SET

# **UHT Mechanical Test System**

- Instron 33R4204 load frame
- Custom-built environmental chamber
  - Inert atm or mild vacuum
  - $\sim 10^{-14}$  atm pO<sub>2</sub> using Ar
- Induction heating system
  - Capable of 2600°C
  - Heating rate of 100's°C/min
- Graphite load train and test fixture
- Testing limited by phase stability
  Ex: ZrB<sub>2</sub>-C eutectic at 2370°C





\*Neuman, et al., Am. Ceram. Soc. Bull., 92[1] 36-38 (2013)





#### **Microstructures**

#### ZrB<sub>2</sub>



99.2% dense

Grain size: 19.7 ± 13.0 µm

Held at 2150°C for 1 hr

 Grow grains and reduce creep above 1800°C

Minimal entrapped porosity No residual carbon

#### ZrB<sub>2</sub>-30SiC



>99.9% dense

ZrB<sub>2</sub> grain size:  $1.9 \pm 0.9 \mu m$ SiC cluster size:  $6.1 \pm 4.4 \mu m$ Max SiC cluster size:  $59.1 \mu m$ Micrcracking threshold ~  $15 \mu m$ 





- Air: Strength 300-400 MPa up to 1200°C, ~200 MPa above (oxidation)
- Inert: Strength stabilizes at ~200 MPa up to 2300°C (creep?)
- Critical flaw size consistent with grain size at elevated temperatures
  - Grain growth during tests at 2000°C and above

Neuman, et al., J. Am. Ceram. Soc., 96[1] 47-50 (2013)





- Air: σ increases ≤1000°C (flaw healing), decreases >1200°C (oxidation)
- Inert:  $\sigma$  >550 MPa up to 1800°C, decreases to 2200 MPa at 2200°C
- Both:  $K_{IC}$  decreases steadily from ~4 MPa•m<sup>1/2</sup> at RT to ~3.5 MPa•m<sup>1/2</sup>

Neuman, et al., *J. Euro. Ceram. Soc.*, 33[15-16] 2889-2899 (2013) Neuman, et al., *J. Euro. Ceram. Soc.*, 35[2] 463-476 (2014)





- Below 1000°C, SiC clusters are the critical flaw
- Oxidation damage controls strength at ≥1200°C (3 pt. bending of bar halves)
- Observed fracture origins are consistent with size of calculated critical flaws
- Improve strength by reducing SiC cluster size or reducing oxidation damage

# **XISSOURI** ZrB<sub>2</sub>-SiC Fracture in Argon

- ~20% intergranular fracture at RT
- Fraction steadily increases with temperature
  - Trend contrary to historic reports
  - SiC cluster size grows >1800°C
- Lower temp. tests do not predict UHT strength







- Fe, Co, U containing phase present following hot pressing
  - Appears wetting to both ZrB<sub>2</sub> and SiC
  - Possibly a silicide phase Reduction of SiC by Fe and Co



#### MISSOURI SCICAN We Increase Use Temperature?



What are we looking for?

- Chemical stability at 2000°C+
- Second phase additions
  - Improve properties
  - Enhance densification
- Higher eutectic temps
  - ZrB<sub>2</sub> SiC at 2270°C
  - ZrB<sub>2</sub> ZrC at 2660°C
  - ZrB<sub>2</sub> ZrC<sub>0.88</sub> at 2830°C

- HfB<sub>2</sub> - HfC<sub>0.9</sub> at 3140°C







- >99% dense
- $ZrB_2$  grain size 4.9 ± 3.0 µm
- ZrC cluster size 1.8 ± 1.5 μm
- Max ZrC cluster 9.8 µm
- 9.5 ± 0.4 vol% ZrC
- 0.10 ± 0.02 vol% C
- 0.05 ± 0.02 vol% porosity





- Strength decreases from ~700 MPa at 800°C to ~300 MPa at 1600°C
  - Maintains ~300 MPa up to 2300°C
- ~4.5 MPam<sup>1/2</sup> at RT with no discernible trend

- Minimum about temperature for relaxation of residual stresses

Neuman, et al., submitted



- Two regimes of failure behavior
  - 1400°C and below strength limited by machining damage
  - 1600°C and above controlled by subcritical crack growth
- Both related to original flaw population induced by machining



#### **MISSOURI Can We Get Higher Strengths?**

- Materials
  - Higher eutectic temperatures
  - HfB<sub>2</sub>-HfC, (Hf,Ta)C, others?
- Microstructures
  - Fully dense, no microcracks
  - Grain size?? (creep vs σ)
  - No grain growth at UHT??
- Impurities
  - Eliminate undesired impurities (transition metals, oxides, etc.)
  - Effects of doping or pinning??

We have only scratched the surface for UHT structure-property relationship studies



