#### Engineering Conferences International ECI Digital Archives

Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III

Proceedings

Spring 4-13-2015

### Sustained Hypersonic Flight – It's harder than Rocket Science

MIchael Smart The University of Queensland

Follow this and additional works at: http://dc.engconfintl.org/uhtc-iii Part of the <u>Materials Science and Engineering Commons</u>

#### **Recommended** Citation

MIchael Smart, "Sustained Hypersonic Flight – It's harder than Rocket Science" in "Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III", G. Franks and C. Tallon, University of Melbourne Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/uhtc-iii/3

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications III by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.



# **Sustained Hypersonic Flight: It's harder than Rocket Science!**



Professor Michael Smart Centre for Hypersonics The University of Queensland



### **Summary**

- UQ Centre for Hypersonics
- Sustained hypersonic flight: Scramjets
- HIFiRE: Australia's hypersonic flight program
- Key Challenges for sustained hypersonic flight
- Hypersonic Environment
- Materials solutions DMTC
- New Structural Thermal Test Facility: HGG
- Future Challenges



Airframe-Integrated scramjet ground test model



# **UQ Centre for Hypersonics**

- Diverse group of 30 academics, researchers and students performing hypersonics research
- The T4 shock tunnel and expansion tubes
- Track record of taking ground tests to flight (HyShot: 1998-2005; HIFiRE:2007-2017)







# Sustained Hypersonic Flight: Rockets versus Scramjets

- Scramjets (Supersonic Combustion Ramjets) can have higher specific impulse (fuel efficiency) than rockets, as they do not have to carry and pump oxidiser.
- Rockets have higher thrust-to-weight.
- Scramjets must fly within the atmosphere to have large thrust-tofrontal area.
- Hypersonic flight within the atmosphere induces high heat loads and drag; but also allows manoeuvring through the use of aerodynamic lift.



Scramjets have particular advantages over rockets for sustained hypersonic flight in the atmosphere



# **Scramjet Applications**

#### There are two key applications for scramjets:

- 1. Hypersonic Cruise
  - Flight speeds of Mach 4-8
  - Long range aircraft (Sydney to London in 2-3 hrs)
  - Military
  - Motivation for the *HIFiRE Program*



- 2. Reusable access-to-space
  - Multi-stage rocket-scramjet-rocket systems
  - Scramjet operation from Mach 6-10
  - Possibility of reusable satellite launch systems





# **HIFiRE Program**

"The main goal of the HIFiRE Program is to develop the science and technology for hypersonic flight with air-breathing propulsion"

### **Organisational Structure:**

- Joint Australian/USA program administered by DSTO and US Air Force
- UQ and Boeing Phantom works are core partners
- Recently extended to 2017

#### Methodology:

- Low cost, sounding rocket based launches
- 9 flights (first flight was in March 2009 HIFiRE 0)
- Combination of fundamental hypersonic flow experiments and scramjet flights
- Culminating in a sustained/powered flight (30 second engine operation) of an autonomous vehicle: HIFiRE 8







# **The HIFiRE FLEET**

HF1: Conical boundary layer transition

HF0:

Exo-atmospheric pspinning body control HF5 & 5B: Elliptical forebodyboundary layer transition



HF4: Hypersonci-re-entry control



HF3: Axisymmetric scramjet





HF7: REST Scramjet thrust production

HF2: Duel mode-combustion transition



## **HIFIRE MANIFEST**

| Flight    | Description                                  | Launch Date                                          |
|-----------|----------------------------------------------|------------------------------------------------------|
| HIFIRE O  | Software Development<br>(DSTO)               | March 2009 (successful)                              |
| HIFIRE 1  | Hypersonic Cone (USAF)                       | March 2010 (successful)                              |
| HIFIRE 2  | Scramjet Combustor<br>(USAF)                 | April 2012 (successful)                              |
| HIFIRE 3  | Axisymmetric Scramjet<br>(DSTO)              | September 2012<br>(successful)                       |
| HIFIRE 4  | Hypersonic Glider (DSTO-<br>UQ-Boeing)       | December 2015                                        |
| HIFIRE 5  | Hypersonic Elliptical Cone<br>(USAF)         | April 2012 (2 <sup>nd</sup> stage<br>rocket failure) |
| HIFIRE 5B | Repeat of HIFiRE 5<br>(USAF)                 | July 2015                                            |
| HIFIRE 6  | Adaptive Control (USAF)                      | 2016                                                 |
| HIFIRE 7  | Free flying 3-D Scramjet<br>(DSTO-UQ-Boeing) | March 2015                                           |
| HIFIRE 8  | Sustained 3-D Scramjet<br>(DSTO-UQ-Boeing)   | 2017                                                 |



# 2015 Flights: HIFiRE 4 and 7





# Key Challenges for Sustained Hypersonic Flight

(1) Aerodynamics and propulsion:

- High flowpath efficiency needed for positive thrust (3-D engines show significant promise).
- Synergistic vehicle-engine integration (net thrust).
- Engine operation over a large Mach range.



**HIFiRE 8** 



# Key Challenges for Sustained Hypersonic Flight

### (2) Materials technology:

- Heating, heating, heating!
  - Heating rates increase at the "cube" of Mach number.
  - Maximum temperatures depend on many factors.
- Weight, weight, weight!
  - High weight requires high lift which creates high drag which necessitates high thrust. High thrust needs more fuel which has greater weight!

### (3) Structural/thermal design:

• Engineering required to deal with differential thermal expansion between hot and cold components.



# **Hypersonic Materials Challenge**



### **Key Components:**

- Vehicle/wing/fin leading edges
- Engine closure notch
- Scramjet combustor (internal flowpath)



## **Leading Edge Environment**

- Bow shock forms ahead of leading edge
- High convective heating from airflow
- Maximum temperature depends on radiation and internal cooling







Heating rates increase with:

- Increasing Mach number
- Decreasing leading edge radius



### **Leading Edge Environment**



ε: surface emissivity

#### q: flight dynamic pressure



## **Combustor Environment**



•

Ref: Tallon et. al., 2011



- Convective heating from hypersonic flow through engine
  - Heat transfer depends on rate of combustion and engine area distribution
- Hot wall decreases heat transfer rate and drag: "hot structures desirable"





### **Hypersonic Leading Edge Solutions**

HIFiRE 8 Requirement:

• 60 second life at Mach 8

Materials solutions:



• Single and multi-phase Carbides and Diborides manufactured using colloidal processing





# **Hypersonic Leading Edge Solutions**

**Space Access Requirement:** 

• Single use to Mach 10 for 10 minutes

Materials solutions:

Replenishable two-phase ablatives



### **Replenishable Two-phase Ablatives:**

- Leading edge cooled by ablation of lower temperature second phase
- Very high cooling performance
- Maintains leading edge shape
- Reservoirs of low temperature phase placed close to the surface to extend life





# **Combustor Solutions for Sustained Hypersonic flight**

#### Rationale:

- "Hot Structures" required: 1600 ~ 2000° C.
- Possible candidates: Refractory metals, Ultra High Temperature Ceramics (UHTC) and Carbon Matrix Composites (CMC).
- Accurate material properties needed for structural/thermal analysis in the hypersonic environment.
- Fabrication/processing must be considered as part of the design from the outset.
- Ground qualification of full scale combustors is essential before flight.



Liquid Cooled Inconel Combustor



# **Scramjet Combustor Solutions**

### **Ceramic Matric Composite Tubes with variable shape**



- Research conducted at DSTO Melbourne
- Processing methods adapted from low temperature CFRP
- Extension to C/C over last 4 years
- Components suitable for short (< 1minute) flights planned for HIFiRE</li>
- Oxidation remains problem for longer flights



# **Full Scale Combustor Testing**



#### **DMTC/DSTO/UQ Hot Gas Generator**

- Ground testing of combustor solutions required before transition to flight
- Vitiated heating added to existing electrically heated DSTO Combustion Test Facility (CTF)
- Can simulate thermal conditions of a scramjet combustor during flight at Mach 8.
- First test May 2015
- Constructed under DMTC; operated by DSTO/UQ





- Significant defence infrastructure
- Built for gas turbine combustor testing
- Generates high pressure air flow up to 600°C
- Flow rate 1-7 kg/s

THE UNIVERSITY OF QUEENSLAND

- Clean inflow to the HGG





# **HGG Protective Liner**



#### **Two part liner:**

- Solid graphite machined to shape (used to shape inflow to test hardware)
- Outer layer of graphite felt for insulation









## HGG Commissioning: Water cooled Inconel combustor

- Liquid cooled Inconel combustors are the current state-of-the-art
- DMTC designed and manufactured test
  component to be used for HGG commissioning
- Welded Inconel construction
- Plasma sprayed Zirconia internal surface
- Water cooled
- L = 275 mm; approximately 1/3 full flight scale











# A call to Materials Researchers

- Sustained hypersonic flight requires high temperature materials for its progress.
- The ability to construct "real" components is far more important than maximizing materials properties.
- We want your contribution!

