Engineering Conferences International ECI Digital Archives

Beneficiation of Phosphates VII

Proceedings

Spring 2015

The Use of a Advanced Process Controls in a Phosphoric Acid Reactor

Vaughn Astley

Follow this and additional works at: http://dc.engconfintl.org/phosphates_vii
Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

Vaughn Astley, "The Use of a Advanced Process Controls in a Phosphoric Acid Reactor" in "Beneficiation of Phosphates VII", P. Zhang, FIPR; J. Miller, Univ. of Utah; L. Leal, Univ. of Sao Paolo; A. Kossir, OCP Group; E. Wingate, Worley-Parsons Services Pty Ltd. Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/phosphates_vii/23

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Beneficiation of Phosphates VII by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

The Use of ADVANCED PROCESS CONTROLS in a Phosphoric Acid Reactor

Vaughn Astley

Beneficiation of Phosphates VII Melbourne, Australia

29th March to 3rd April, 2015

ADVANCED PROCESS CONTROLS (APC) Remember, Remember when Automobiles/Cars has just a Steering Wheel, Gearlever, and Three Pedals???

Maybe a Direction Indicator Stalk, Maybe Windscreen Wipers Too!!!

Independent Rear Suspension, WOW!!! Now we have.....

4EAT	ABS	ACE	ACC	ADAS
AGVS	ARC	ASR	ASTC	ATTS
AYC	CVRSS	DMCM	DSCC	EAS
EBCM	EBD	EBTCM	ECD	ECM
EDR	EGRCMD	S	EHCU	EHPAS
EMAS	ETS	EVTOP	FEDS	HICUS
ICC	ICWS	IEDIS	LDAS	NAICC
TCS	VSES	WVVWS		

Who Knows What These Do?

APC

4EAT	4 Speed Electronic Automatic Transmission	ECD	Electronically Controlled Deceleration
ABS	Antilock Brake System	ECM	Engine Control Module
ACE	Active Cornering Enhancement	EDR	Event Data Recorder
ACC	Adaptive Cruise Control	EHCU	Electronic Hydraulic Control Unit
ADAS	Advanced Driver Assistance System	EHPAS	Electric Hydraulic Power Assisted Steering
AGVS	Automated Guided Vehicle System	EMAS	Engine Management and Analysis System
ARC	Active Roll Control	ETS	Enhanced Traction System
ASR	Acceleration Slip Regulation	EVTOP	Enhanced Tactical Vehicle Occupant
			Protection
		EGRCMD	S EGR Motor Commanded In Steps
ASTC	Automatic Stability and Traction Control	FEDS	Flexible Engine Diagnostic System
ATTS	Advanced Torque Transfer System	HICAS	High Capacity Actively Controlled Steering
AYC	Active Yaw Control	ICC	Intelligent Cruise Control
CVRSS	Continuous Variable Road Sensing Suspension	ICWS	Intersection Collision Warning System
DMCM	Driver Motor Control Module	IEDIS	Integrated Electronic Distributorless Ignition System
DSCC	Distance Sensing Cruise Control	LDAS	Lane Departure Avoidance System
EAS	Electrically Assisted Steering	NAICC	Navigation-Aided Intelligent Cruise Control
EBCM	Electronic Brake Control Module	TCS	Traction Control System
EBD	Electronic Brake force Distribution	VSES	Vehicle Stability Enhancement System
EBTCM	Electronic Brake Traction Control Module	WVVWS	Wireless Vehicle to Vehicle Warning System

WOW!!!

All These Computer Controls from the Cars Sensors!! Improved Fuel Economy! More Power From Smaller Engines! Less Emissions!! FASTER ACCELERATION!!! More Stability FASTER AROUND CORNERS!!! Latest BMW has about 90 Computer Control Devices **Nearly All are Passive to Driver!!!!**

• Continuously Controls Sulphate, P₂O₅ Strength and Operating Rate of PhosAcid Plants..... • PhosAcid Cruise Control???? **– Development History – How it Works – How it Performs** – Benefits -How it is Installed

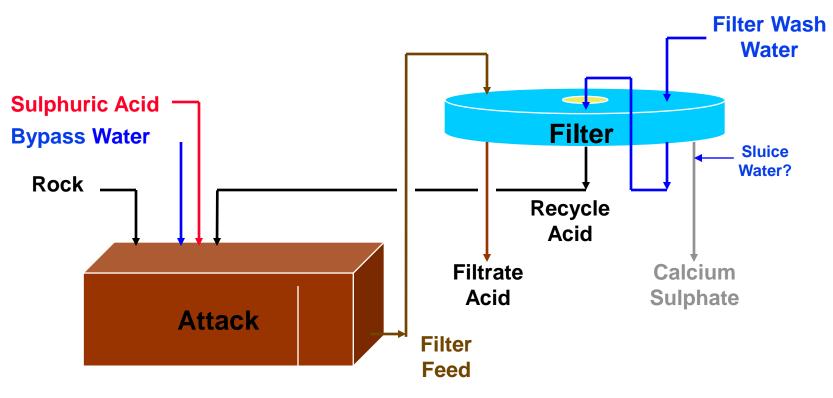
- History of Original Development and Implementation
 - 1980's, IMC & Agrico Advisory Programs for Sulphate Control
 - Took ~2 Years to get the Sulphate Control to Perform,
 - Took ~4 years to get the P₂O₅ Gravity and Filter Feed Controls to an Acceptable Operational Status.
 - On-Line Control System for Sulphate, Rate and Strength Control Implemented by IMC in 1991 at Three New Wales Plants
 - Installed at South Pierce, Faustina, and Uncle Sam after Merger with Agrico in 1993
 - Partial Installation at Riverview and Bartow After Merger with Cargill to Form Mosaic in 2004

- Current Development and Implementation
 - Improved Program and Logic Codes Written From Scratch and

Operator/Supervisor/DCS Interaction Improved in 2006

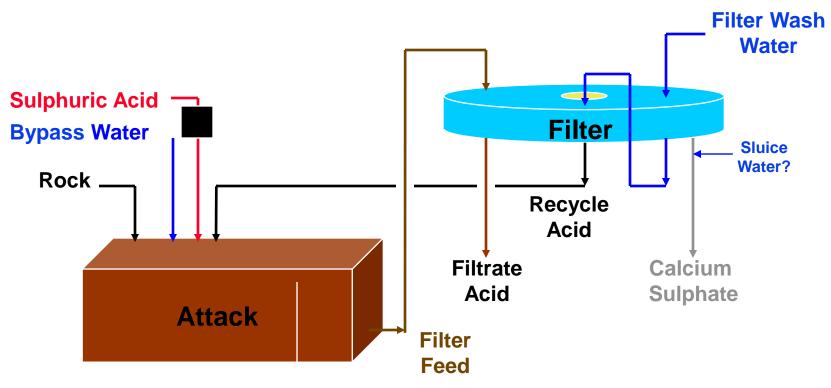
– Wash Water Pulse Eliminated

Many Inquiries, but Installed at Only One Other Plant.


SO HOW DOES IT WORK

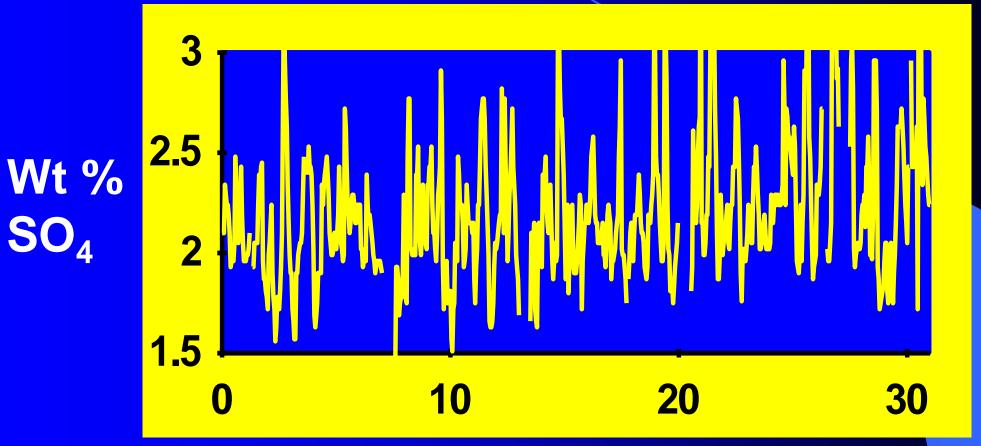
Sulphate Control
Phosphoric Acid Strength Control
Filter Feed Control
Filter Feed Level Control
ByFinally Controlling Rock Rate

PHOSPHORIC ACID FLOWSHEET

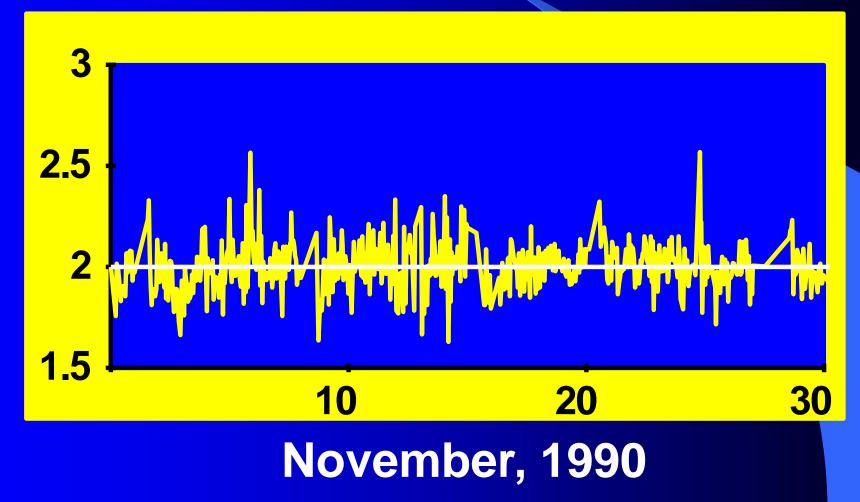


Sulphate Control

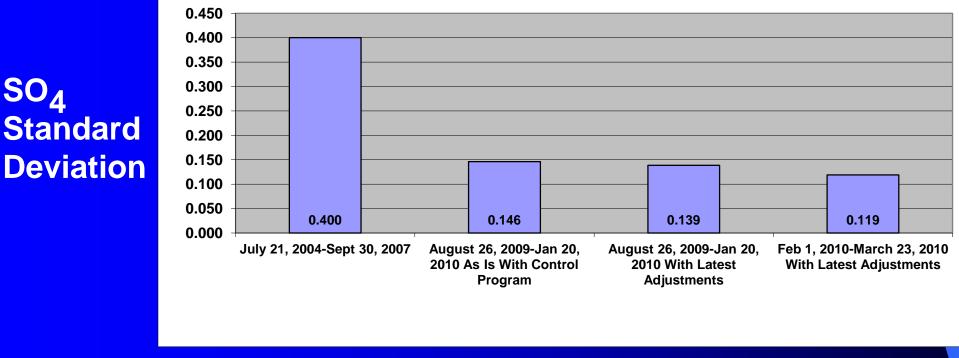
- –Measure Sulphate in PhosAcid each Hour (Flexible)
- **–Targeted Sulphate Level is Set (performance)**
- -Acid to Rock Ratio Adjusted to Attain Target
- –Ratio Adjusted After Sulphate Sample Result Entered
- –Corrects Each Time Based Upon How Previous Adjustments Performed!!!!



Target???Act Avg2.20Std Dev0.36


BC (Before Computers) SO₄ Control

March, 1988


Target 2.00 Act Avg 2.00 Std Dev 0.12

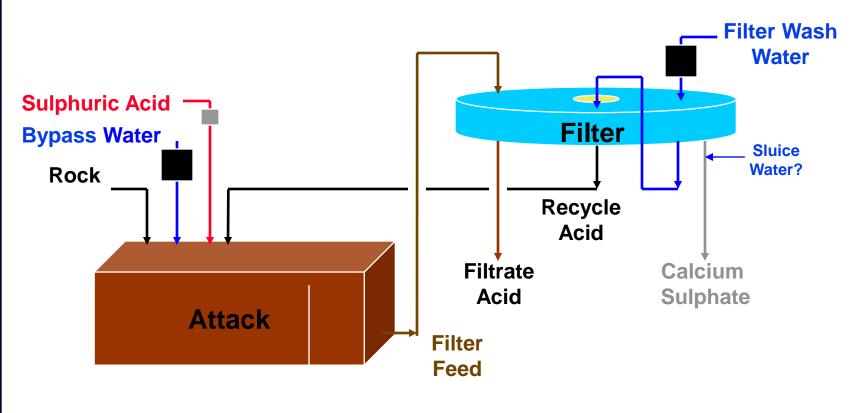
On-Line SO₄ Control

SO₄ Standard Deviation More recent 2007 - 2010 Data

Average Free Sulfate Difference from Target

Before APC

SO₄


Advisory Partial **On-Line** Cascade Full Cascade

- Sulphate Control......Done
 Next We add:-
- Phosphoric Acid Strength Control
 - -P2O5 target...Based on Downstream Needs
 - Continuously Monitors Water to Rock Ratio
 - -Adjusts Filter Wash Water
 - -Controls By-Pass Water
 - -Adjust Ratio After Every Sample, (Hourly)
 - Corrects Each Time Based Upon How Last Adjustments Performed!!!!

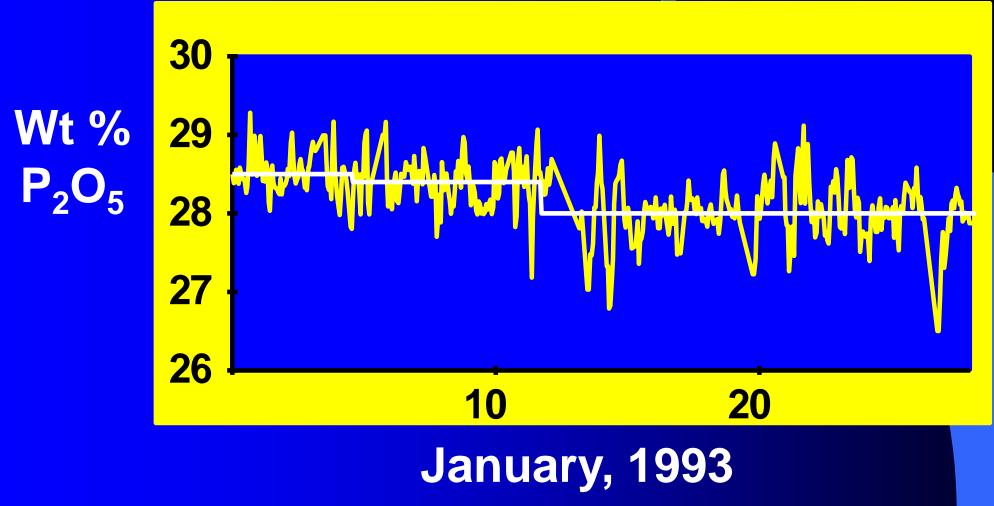
PHOSPHORIC ACID FLOWSHEET

Target 28.20 Actual 28.13 Std Dev 0.53

BC (Before Computers) P₂O₅ Control

30 Wt % 29 Ρ, 28 27 26 10 20 30 **January**, 1990

BC (Before Computers) P_2O_5 Control 31 Days of January, 1990


Target 28.20

Actual 28.13

Std Dev 0.53

Target 28.38 Actual 28.38 Std Dev 0.32

On-Line P₂O₅ Control

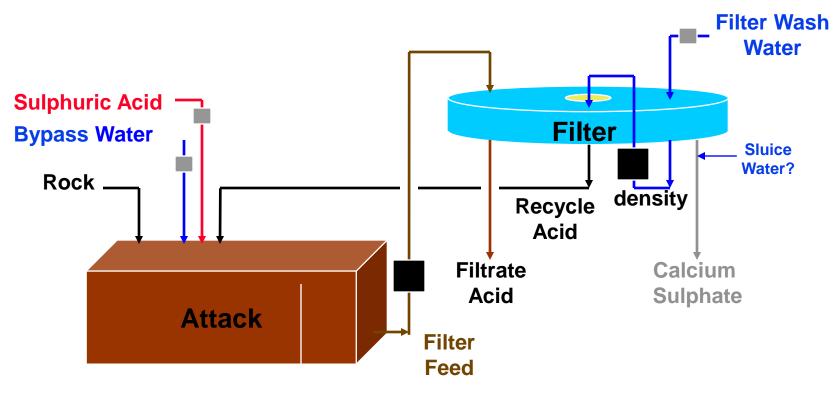
On-Line P2O5 Control

30 Days of November, 1993

Target 28.38

Actual 28.38

Std Dev 0.32


Was 0.53

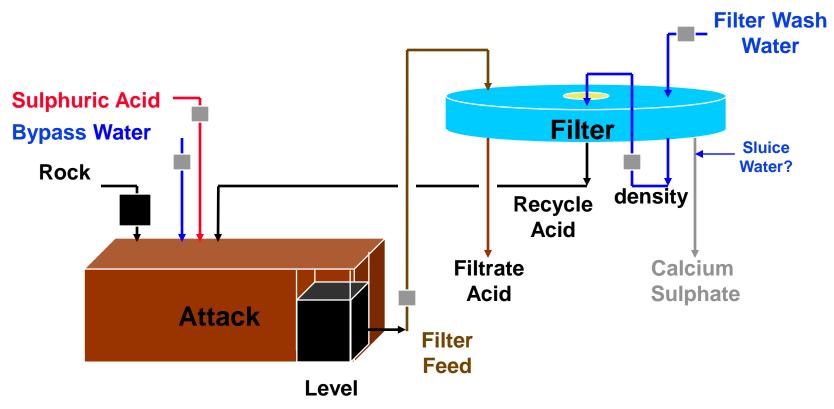
Sulphate ControlDone
Phosphoric Acid Strength Control.....Done
Next We Add:Filter Feed Control – Tail Wash Filtrate Density Needed

PHOSPHORIC ACID FLOWSHEET

PHOSPHORIC ACID PLANT ON-LINE CONTROLS

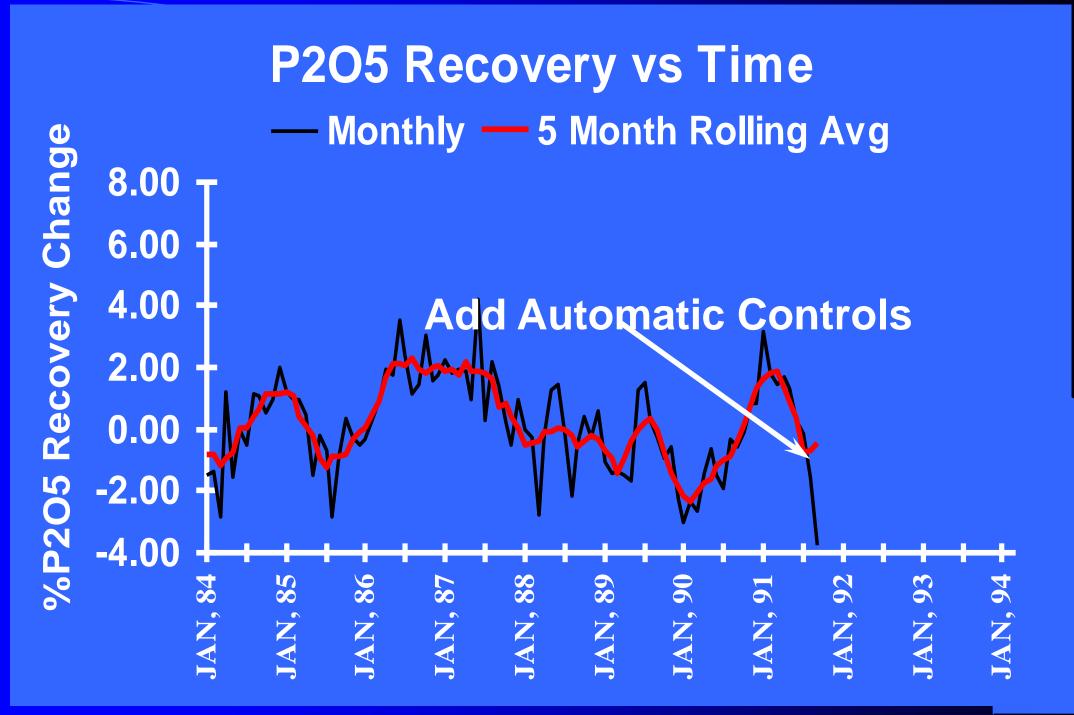
- Sulphate ControlDone
- Phosphoric Acid Strength Control.....Done
- **Filter Feed Control**
 - No. 3 Filtrate Density Target
 - Density Target Sets <u>Filtration Recovery</u>
 - Filter Feed Rate Set is Based on Final Filtrate Density

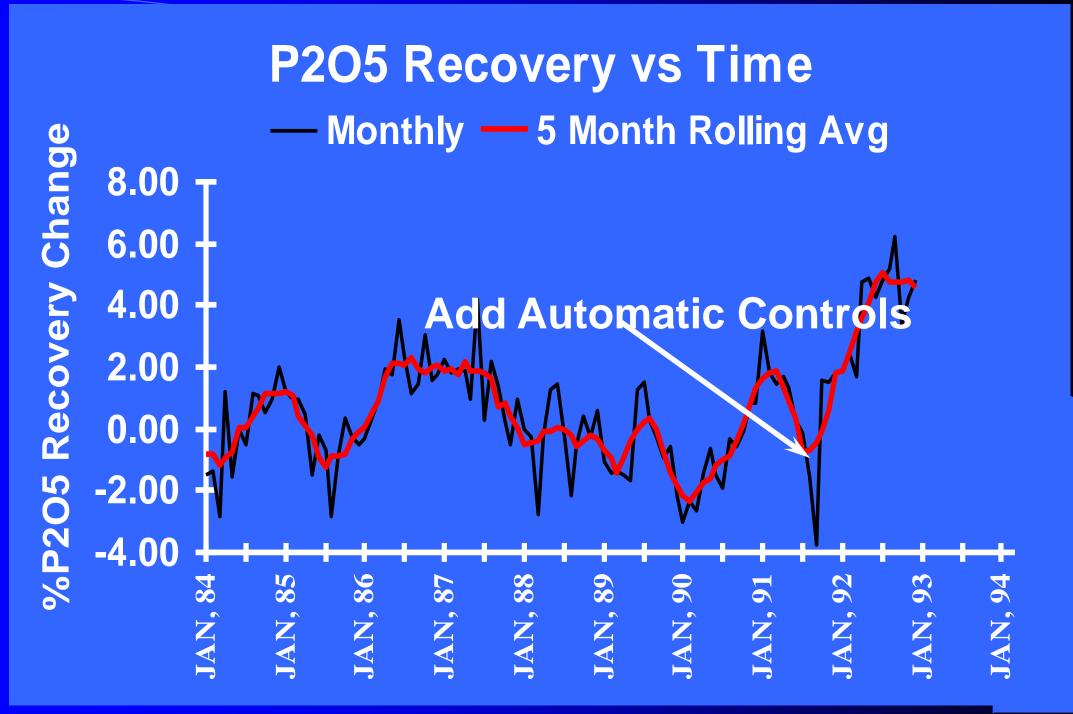
One Attack..... Three Filters!!!!!

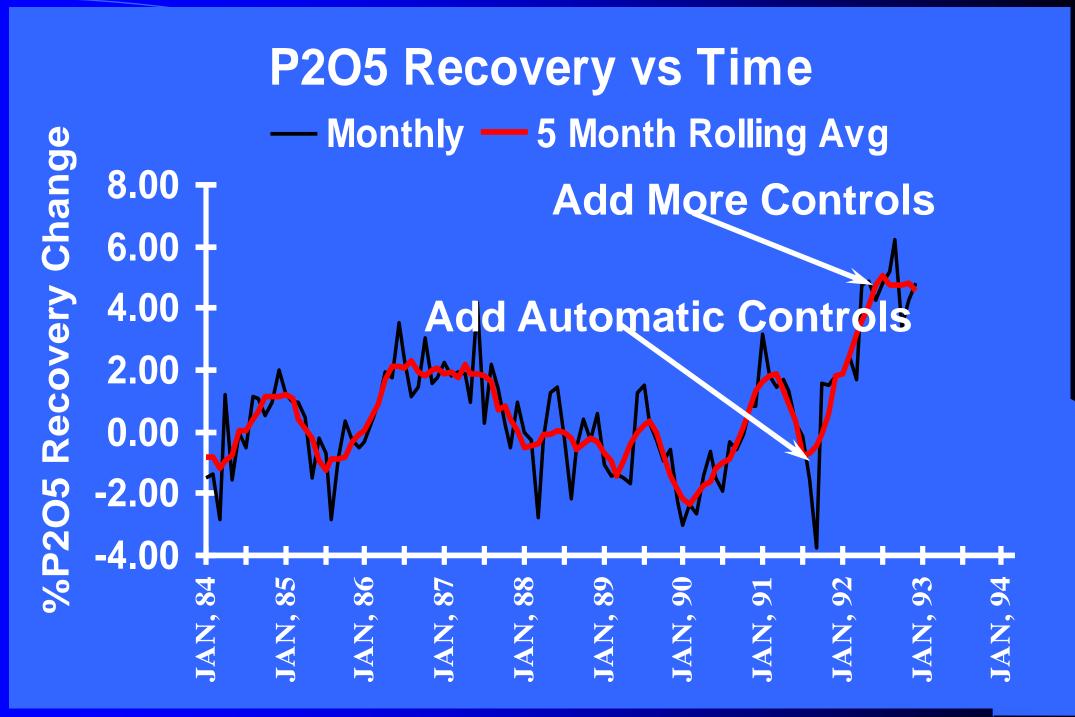

🚺 Delta¥ Operate (Run)							
Module:		Main: P	STRENGTH_CONTR	OL 🗾 User	mame: BKW		5:28:23 PM 🙇 ?
L 🗲 🔲 🚛		2 1	1 🕰 👘	. 🔬 🤹	s 🐼 🚔 🕅		🗗 🛞
				RENGTH CON		<u></u>	
			IER AND ST			1.05	1.00
				Pond Water To #1 Cell	24C Wash Water	#1 Belt ⊮Vash Water	#2 Belt ⊮Vash Water
				26FIC2310		26FIC008106	26FIC008107
				SP 0.0	SP 375	SP 375.0	SP 400
HISTORY DISPLAY				PV 0.0	PV 375	PV 370.7	PV 400
				CV 1.7	cv 19.3	CV 90.7	CV 60
	0.00			AUTO	AUTO	AUTO	AUTO
	<mark>8.00</mark> •P2O5 CG-TPH CH	H - Limited TPH CI -	TPH CJ-Expected	CK - TPH CL - Total	CM - Total CN - Bypass	CO - Total CP - 24C	CQ - #1 Belt CR - #2 Belt
			Change P2O5 Target	Water Diff TPH Wash	GPM Wash GPM	GPM Wash GPM	
	arget Reactor		Reactor Last Change	Required Required	Required Setpoint	Filter Wash Setpoint	Setpoint Setpoint
	8.00 -2.07 8.00 -2.07		2.07 0.00 2.07 0.00	14.06 273.7 14.06 272.9	109056.5 108759.0	1090. 388.4 1087. 382.6	359.2 342.6 361.1 343.4
	8.00 -2.07		2.07 0.00	14.06 273.0	108751.2	1087. 386.2	360.4 341.0
12/07/2010 17:25:03 2	8.00 -2.07	-2.07 -	2.07 0.00	14.06 274.2	109250.8	1092. 394.8	348.0 349.4
	8.00 -2.07	-2.07 -	2.07 0.00	14.06 272.7	108651.9	1086. 391.1	346.3 348.7
Rock Rate to Filtrate Flow Ratio	FI	LTER FEE	D AND ROCI	K RATE CONT	ROL		
1.62	24C FILTER FEED	R #1 FILTER FEED	#2 FILTER FEED				CU - H2O Factor Gain
E stimated Total Filtrate Flow to Clarifiers to maintain	SP 900.0	SP 800.0				ROCK SLURRY	2.000
Digester Strength 585. gpm	PV 903.8			PM Calc		TO REACTOR	2.000
Actual Total Flow	CV 36.7			Reactor	Digester	SP 5970 LBMIN	2.000 2.000
741 gpm	AUTO	AUTO		P205	56.1%	PV 5963 DRY	2.000
1.089 1.109	1.094 Filtrate SGU			28.04	COMP#7 LEVEL	CV 82.9 ROCK	
1.100 1.106	1.100 Target SGU			28.37 27.89		AUTO	
	-2BeltDev AD - Ne	w AE - New	AF - New	27.56		AO - New	
Target Target	Target 24C Feed		2 Belt Feed	27.89		Rock Feed Rate	
Gravity Gravity -0.012 0.0026	Gravity SetPoint -0.005 900		SetPoint 800			LbMin 5970	
-0.014 0.0039	-0.008 900		800			5970	
-0.014 0.0071	-0.009 900		800			5970	
-0.015 0.0062 -0.016 0.0074	-0.010 900 -0.009 900		800 800			5970	
-0.016 0.0074	-0.009 900	800	800			5970	
				DEFGH	PSTVORW		
PHOS OVERVIEW	#1 BELT FILTER	24C FILTER	#2 BELT FILTER			SULFATE CONTROL	
23XS046	i 22TT201B_104	i 06	PT_405	i 06PDT_404	i	i 🔧	💯 🐠 🖓 🗵
Sat 14:57:38 EAST 5	ULFURIC UPS ALAR	RW	23XS046/DISCRETE	ALARM			P_CTRL1
🏄 Start 🛛 🍷 🚱 🎪 頂 🏉	FlexLock	🛕 🙀 Exploring I	DeltaV DeltaV	Operate (Run)			🦪 🇞 🗹 🛃 🛃 🎒 5:28 PM

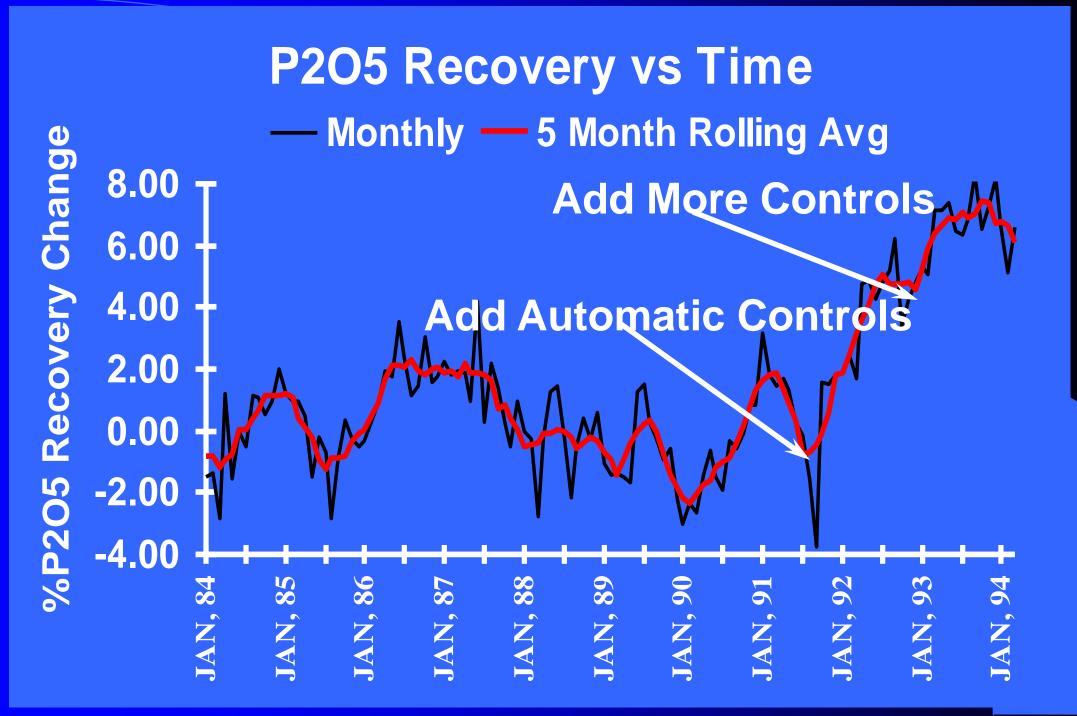
• Phosphoric Acid Strength Control......Done Filter Feed Control • Finally We Add:-• Rock Rate **–Rock Rate Set is Simply Based on the Filter Feed Level**

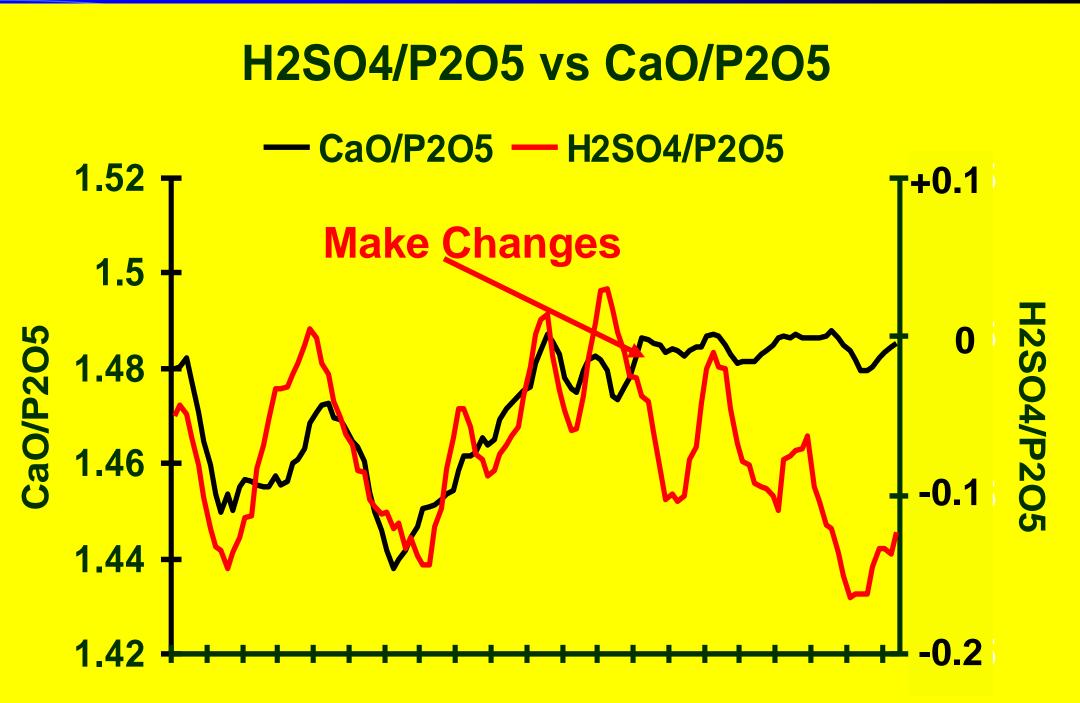
 Initially Sulphate Control was the Focus for First Two or Three Years.

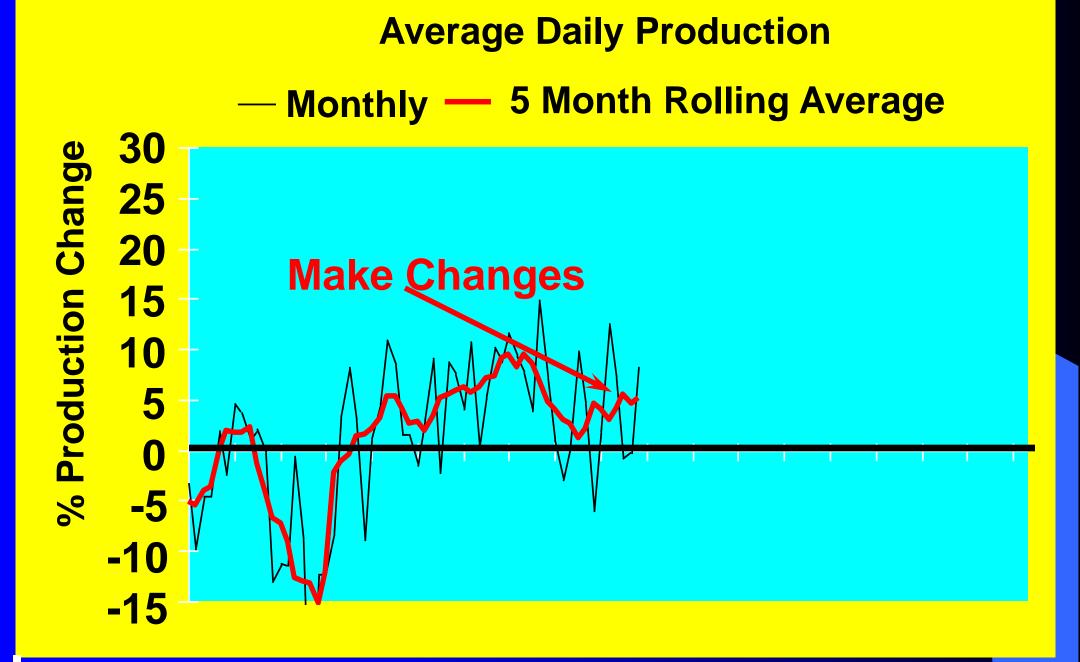

 The Next Several years were Needed to Optimize the Programs Used to Control the More Complex P₂O₅ Attack Gravity.


 Finally, Again Three or so Years Needed for the Slurry Filter Feed and Filter Operation to be Perfected.


• So What Happened??




How it Performed

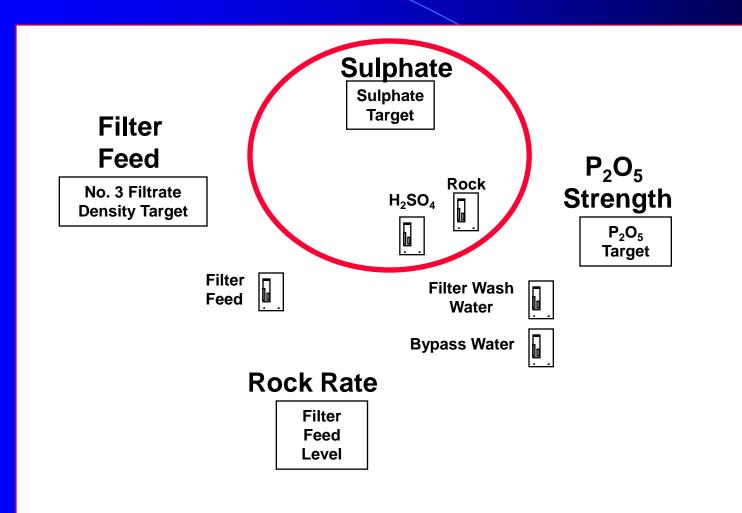


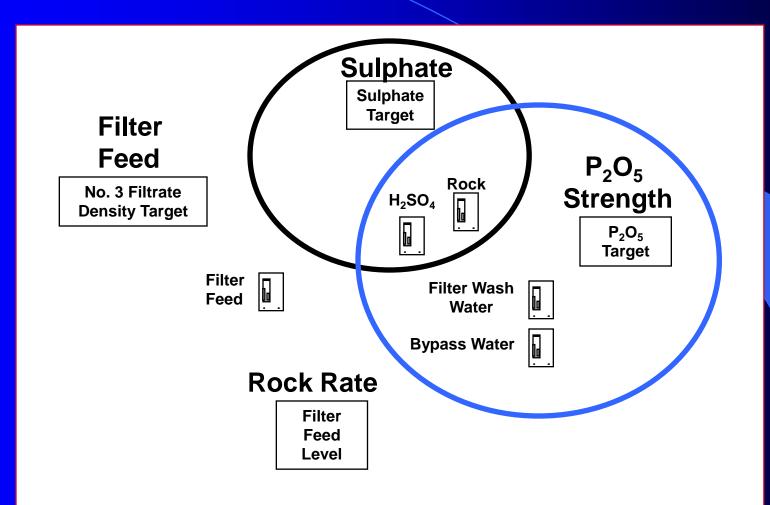
Average Daily Production

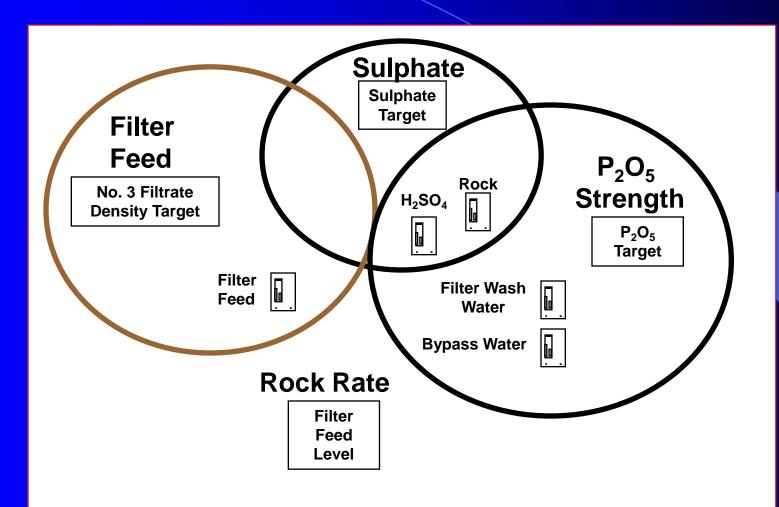
— Monthly — 5 Month Rolling Average

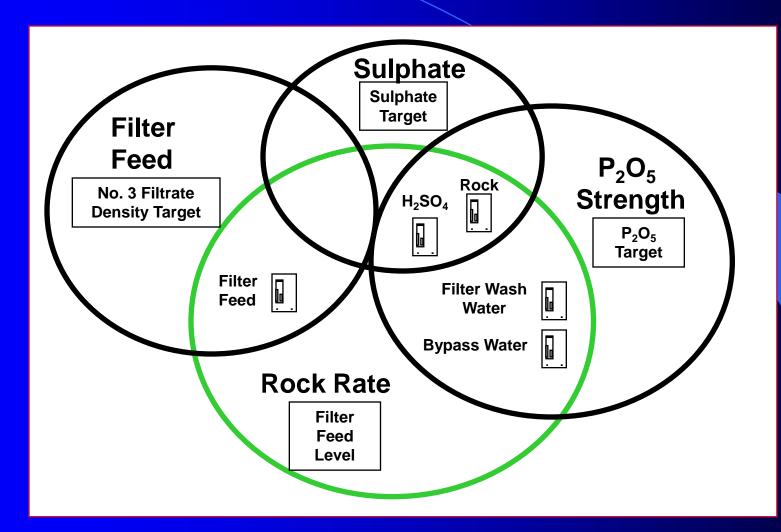
APC

- Did the On Line Controls Give an Improvement of about 0.5% or 7%?
- It Did Both
- The Reduction in Water Soluble/Citrate Soluble Losses in the Gypsum was About 0.75%
- However, Other Losses Also Decreased
 - Flash Cooler Losses
 - Less Upsets on Filter and Filterability
 - Line Scrub Losses (Less Build Up, Steadier Super-Saturation levels)
 - Less Filter Scaling (Ditto)
 - Tank Clean Out Losses
 - Less Frequent Down Days


A Smoother Operation Leads to Many Improvements Downstream




- In Early On Line Control System Implementations
 - The Reduction in Filter Losses After the Implementation of On-Line Controls was About 0.5 - 1%
 - (But at a Higher Rate and With an Inferior Rock Quality)
 - But the Improvement in the Overall Recovery for the PhosAcid Facility was Over 7%
- Results Will Depend on How Well Current Facility is Operated!!!



• How It All Links Together.....

PHOSPHORIC ACID PLANT ON-LINE CONTROLS

- Control Limits and Logic (Some Fuzzy) for
 - -Multiple Filters and Flow Partitioning
 - **–Upset Conditions**
 - **–Data Entry Errors**
 - -Rate and Flow Limits
 - –Adaptive In That Drift In Instrumentation Has Little Effect
 - -Use of Data to Enhance Operations

Large Rate Improvements

Increased Reactor/Filter Rates
 Higher Average Operating Rates

Increased Operating Time Due to:

- Less Frequent Filter Scrubs
- Longer Times Between Turn-Rounds
- Less Line Scaling

How Are Other Attacks Controlled Now?

• Characteristics of Currently Operating Control Systems

- Use Look-Up Charts...
- Bump and Step Charts,
- Tables of Adjustments
- Simple Programs.. Enter SO₄ Deviation and Rock Rate, Tells Operator How to Change Sulphuric Acid.
- What-If diagrams.
- Need Constant Attention of Operator
- Wouldn't Cruise Control be Better?

- i.e. Even Stability Control!!

How it is Installed

SO HOW TO CATCH UP!!!

What we do.....

- Two Week Site Visit, Evaluation of Plant Performance, Lab Data, and Analysis of Electronic DCS Data,
- Need 3 to 6 months of 1 Minute DCS and All Laboratory Loss Data, (250,000 rows!!!)
- We Estimate Benefit to Recovery and Production,
- We Determine Cost of Full APC Installation, Including Training,
- About \$34K (Intn'l) to Accomplish This First Step

THEN, if Acceptable, Implement Full APC

Is Control too Complicated and Costly to Install and Maintain?

- (Turn-Key... ~\$400,000 to Install for Domestic, ~\$500,000 for International Facilities and <\$5,000/Yr to Maintain)
- Similar Trains are ~\$100K Each
- Do We Need On-Line Analysis
 - You Don't need Continuous Analysis, Just The Routine Hourly Sulphate and Gravities is All that is Needed!!!

Implementation Of Full APC

- Site Visits to Observe Operations and Collect Data.
- A Year or Two of Electronic (1 Min DCS Data), & Lab Data to Develop Computer Control Programs
- DCS Programming with Operational Code
- Operator Training and Debugging
- Several Site Visits for Installation and Training
- Stepwise Commissioning, and Operator Training in:-
 - Free SO₄ Operation & Control,
 - Target P₂O₅ Strength Control,
 - Filter Feed and Multi-Filter Operation,
 - Finally Level Control & Rock Feed.

Implementation Of Full APC

Total Installation Cost Say About \$450K

A 1% Recovery Improvement at 4000 tpd P₂O₅ is 40 tpd A 2% Production Improvement at 4000 tpd P₂O₅ is 80 tpd

At Roughly \$350/ ton P₂O₅ @ 120tpd is thus \$40,000 per day!! • About a 12 Day payback!! If you are @ 1200 tpd P₂O₅ then about a Month!!!

SMOOOOOOTH Running!! Poor Operation, \$980,000 pa. Higher Losses \$750,000 pa. Upsets, Plant Crashes, \$850,000 pa. **Higher Scaling Costs**, \$350,000 pa **Operator Mistakes \$699,997.7 pa.** Good Control....Priceless (MasterCard Ad) Thank You

VaughnAstley@DrPhosphate.com

A Set of Notes in French are shown in "notes' view Des commentaires en langue Française de la présente présentation y sont incluses