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Outline 

1. Realistic thermomechanical testing with thermal gradients 
 
2. Interpreting experimental results by means of numerical 

models  
 
3. Model validation by means of in situ strain measurements 

via high energy X-ray diffraction at Argonne APS* 
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*APS=Advanced Photon Source 
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Stress distribution due to thermal gradient 

Biaxial 
compressive 

stress Biaxial tensile 
stress 

Cooled inner wall Hot outer wall 

Cooling air Cooling air 

Hot gas  
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Investigated coating system 
(000) 

(111)g/ 
(0002)a2 

(0003)a2 
1 – 10 µm 

ZrO2+(6-8)wt.-% Y2O3 

Al2O3 

MCrAlY, 
PtAl 

Nickel-base 
superalloy 
 

a = 10·10-6K-1 

a = 8·10-6K-1  

a = 14 -16·10-6K-1 

20μm  

20μm  

near TGO 

near surface 
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Test facility for thermal gradient mechanical fatigue  

16 Quartz lamps, 1 kW each 

Internally  
cooled  
tensile test 
specimen 

Thermal Gradient Mechanical Fatigue = TGMF 
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View of open furnace 
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Summarizing thermal and mechanical loads 

• Maximal material temperatures ca. 1000°-1100°C 

• Thermal gradient (temperature drop over a ceramic TBC of 100-200µm 

thickness of about 80°-150°C)  

• High thermal heat flux  

• Multiaxial thermally induced stresses  

• High thermal transients (heating and cooling rates) 

• Superposed mechanical loads (centrifugal forces on rotating blades) 
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Thermal mechanical load cycle – representing the 
fatigue load of flight cycle 

• It is not practical to perform test cycles with realistic cycle duration (e.g.  
2 - 10 hour flights)  - thus: reduced dwell times 

• But: time at high temperature has major impact on lifetime of the coating 
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M. Bartsch et al., Key Eng. Mat. Vol. 333 (2007) pp. 147-154 



Considering time dependent effects by pre-ageing  

+ 

Thermomechanical 
fatigue 

500 h 

250 h 

 0 h 

Time at 
1000°C 

Pre-ageing 

until 
spallation 

1000  (50h) 

500  (25h) 

TGMF- 
cycles 

+ 
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Failure after thermomechanical laboratory testing 

after 933 TGMF-cycles & 
500h pre-ageing at 1000°C 
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‚Smiley crack‘ 
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3 - dimensional sketch of defects 
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Sketch by Bernd Baufeld, in Key Eng. Mat. Vol. 333 (2007) pp. 147-154 



Summary of experimental results 

• Without pre-ageing no spallation up to 7000 cycles 
 
• 250h (500h) pre-ageing + 1000 cycles, open delamination  
     cracks, spallation 

Evolution of the ‚smiley‘ cracks is linked to cracks in the TGO, 
perpendicular to the applied mechanical load. 
Initial TGO cracks are generated due to axial tensile stresses  
The questions are 
 

- How can axial tensile stresses evolve in the TGO during TGMF 
tests? 

- Why do they only evolve in pre-aged specimens? 
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After pre-ageing: bi-layer thermally grown oxide 

200h/1000°C 

1 µm 

Fine grained 
intermixed zone 
Al2O3 +ZrO2 

Coarse grained  
Al2O3  
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Numerical model: Geometry and boundary conditions 

Bi-layered TGO 
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 M. Hernandez, A.M. Karlsson, M. Bartsch: Surface Coatings & Technology 203, 3549-58, 2009 
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Stress free at homogenous temperature of 1000°C 

Electron Gun 

Manipulator 

Ingot Feeding  
System 

Deposition  
temperature: 
ca. 1000°C 

Þ  high residual stresses 
     at ambient temperature 

>Thermal Barrier Coatings IV  •   June 27,  2014   •   Irsee, Germany 

Electron Beam - Physical Vapor Deposition 
(EB-PVD) 
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Numerical model: load cycle 

• Temperature at the outer 
surface is shown 

 
• Thermal gradient:  time 

dependent temperature 
difference between outer 
and inner wall (not 
shown) 

 
• mechanical cycle TGMF 

Highest mechanical tensile load, thermal 
gradient near stationary conditions 
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Mechanical load 



Axial stresses for elastic – plastic material properties 

Axial stresses across the 
specimen wall due to  

- thermal gradient 
- mechanical load 
- property mismatch 

TGO always under 
compression 

even at highest 
mechanical 
tensile load 

Stress free at Tprocessing  
(1000°C, homogenous) 
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M. Hernandez, A.M. Karlsson, M. Bartsch: Surface Coatings & Technology 203, 3549-58, 2009 

Surface 
temperature:  
1000°C 
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Including time dependent TGO properties:  
growth strain and creep / relaxation 

Thickening εt and lengthening  
εl growth strain 
 
          εl = 0.1· εt 

Karlsson, A.M. and A.G. Evans, Acta 
Materialia, 2001 49(10): p. 1793-1804 

Growth strain increases the 
compressive stress in TGO! 

Relaxation decreases the 
compressive stress in TGO! 

With data from J.D. French, J.H. Zhao, M.P. Harmer, H.M Chan, 
G.A. Miller. J. American Ceramic Society 77 (1994) 

>Thermal Barrier Coatings IV  •   June 27,  2014   •   Irsee, Germany www.DLR.de  •  Chart 18 



Effect of TGO properties on stress accumulation 

Temperature 
Mech. Load 

time 

Deformation  
of TGO Linear-elastic Deformation 
of  TGO Linear-elastic 

+ TGO-growth 

External wall 

Inner wall 

RT 

1000°C 
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Effect of TGO properties on stress accumulation 

Temperature 
Mech. Load 

time 

Deformation   
of TGO slow  

relaxation 

Deformation   
of TGO 

fast  
relaxation 

External wall 

Inner wall 

RT 

1000°C 
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Evolution of axial TGO-stresses 

Aged 

As Coated 

       Small grains (d < 1 µm)  
       Fast stress relaxation 
       As Coated TGO 
Large grains (d >1 µm)  
      Slow stress relaxation 
      Aged TGO 

Hypothesis: Initiation of fatigue crack in TGO due to accumulation of tensile 
stress during subsequent TGMF-cycles  
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Open questions – and a method to get answers 

• Mechanical material properties of the coating materials are still unknown: 
Temperature dependent elastic properties, yield strength, creep laws of 
TGO (intermixed zone and  coarse grained layer), bond coat and TBC 

 

• Strategy:  
• measuring the strains in the coating system during TGMF by means of 

high energy X-ray diffraction 
• calculating (fitting) the respective material properties by means of finite 

element simulation     
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Experimental set-up at Argonne Advanced Photon source 

• Argonne National Laboratory, Argonne, Illinois 
• Synchrotron high energy X-Ray beam-line; 65 keV beam energy 

>Thermal Barrier Coatings IV  •   June 27,  2014   •   Irsee, Germany www.DLR.de  •  Chart 23 



Top view of heater and beam 

• 4 focused infrared lamps 
• 8 kW total 

 
• Beam exit window 

• 17⁰ 4θ 
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S. F. Siddiqui et al., Rev. Sci. Instr., 84 - 083904 (2013)  



Servohydraulic testing machine on µm - positioning rig 
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Assembling heater, grips and specimen at Argonne APS 



Measurement method 

Loading  parameter: 
• thermal cycle (80 min)  
• outer surface temperature 

max. 1000°C, temperature 
difference between outer and 
inner surface ca. 150°C 

• variation of thermal gradient by 
variation of cooling flow rate 

• superposition of mechanical 
load 
 

Beam parameter: 
• 65 keV beam energy 
• exposure time 0.5 to 15 sec. 
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K. Knipe et al., AIAA Structures, Struct. Dynamics & Mat. Conf., Boston, MA, 2013 



X-Ray diffraction 2-D strain measurements 
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K. Knipe, Nature Comm. 5 (2014) article Nr. 4559 



YSZ - strain results 

 50µm 

e22 

e22 
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BC YSZ 

• No thermal gradient 

• 25°C 
• variation of 

mechanical load 

• X-Ray scan 
through coating 
thickness  

• every 3.5 minutes 
• window size  
 30 x 300 microns 
• 10 window scan 



Strain measurement during cyclic loading 
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Coating surface 

Time 

1000 °C 

substrate – 
bond coat 
interface 

Temperature 

80 min 

 
• Outer surface ramped up to 

1000 ͦ C in 20 minutes and 
then held for 40 minutes 

• Coolant flow rate for gradient 
varied 

– 30, 50, and 75 % max. flow  
     (100 SLPM* max) 

• Constant nominal mechanical 
stress 

– 32, 64 and 128 MPa applied 

SLPM* = standard liter per minute 



www.DLR.de  •  Chart 30 >Thermal Barrier Coatings IV  •   June 27,  2014   •   Irsee, Germany 

0 20 40 60 80
3

5

7

9

11

x 10-4

Time (Minutes)

YS
Z 

(1
11

) e
11

 

 

YSZ (111)
Temperature

0 20 40 60 80
0

200

400

600

800

1000

1200

Time (Minutes)

O
ut

er
 S

ur
fa

ce
 T

em
pe

ra
tu

re
 (d

eg
 C

)

e22 

e11 

Strain in YSZ during thermal cycle 

• 64 MPa  
• 75% cooling air flow rate 

at room temperature: 
- compressive in plane strain e22  
- tensile out of plane strain e11 

 
at high temperature: 
- strain reduces (closer to stress 

free condition at manufacturing 
temperature) 
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e22 

e11 

Strain in bond coat β-NiAl during thermal cycle 

• 64 MPa  
• 75% cooling air flow rate 

at room temperature: 
- tensile in plane strain e22  
- compressive out of plane strain e11 

 
at high temperature: 
- strain reduces (stress free at 

manufacturing temperature) 
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TGO stress in pre-aged specimen during thermal cycle 
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Pre-aged specimen: 
304h at 1000°C  

• the TGO experience 
tensile stresses 
under TGMF loading 
depending on 
applied mechanical 
tensile load and 
thermal gradient.  

 
• Relaxation occurs 

during dwell time at 
high temperature, 
which is a condition 
for accumulating 
tensile stress during 
cycling.   



Conclusions and outlook 
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• In situ strain measuring by X-ray diffraction 
• gives for each load case an equation for determining the respective 

material properties  
• test results can be used for validating numerical models and 

adapting laboratory experiments to more realistic conditions, e.g.  
• are dwell times and transients appropriate, e.g. time for 

relaxation processes within one load cycle appropriate? – 
example: stress accumulation in TGO 

• effect of time dependent processes captured?– TGO growth? 
Material property changes?  

• Aim: validated realistic laboratory test for turbine blade materials for 
investigating damage mechanisms and contributing to life time modelling.  

• Relevance-check of laboratory test: are observed damage mechanism 
and failure mode realistic? 

 
 

 

 
  



Thank you for your 
attention! 
 
       Questions?  
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