Engineering Conferences International ECI Digital Archives

Thermal Barrier Coatings IV

Proceedings

Summer 6-23-2014

Cold spray bond coats structure and oxidation behavior

A. Barth *Oerlikon Metco*

S. Kudapa Oerlikon Metco

W. Wong Oerlikon Metco

K. Onizawa *Oerlikon Metco*

Follow this and additional works at: http://dc.engconfintl.org/thermal_barrier_iv Part of the <u>Materials Science and Engineering Commons</u>

Recommended Citation

A. Barth, S. Kudapa, W. Wong, and K. Onizawa, "Cold spray bond coats structure and oxidation behavior" in "Thermal Barrier Coatings IV", U. Schulz, German Aerospace Center; M. Maloney, Pratt & Whitney; R. Darolia, GE Aviation (retired) Eds, ECI Symposium Series, (2015). http://dc.engconfintl.org/thermal_barrier_iv/12

This Conference Proceeding is brought to you for free and open access by the Proceedings at ECI Digital Archives. It has been accepted for inclusion in Thermal Barrier Coatings IV by an authorized administrator of ECI Digital Archives. For more information, please contact franco@bepress.com.

Contents	cerlikon metco
1 Cold Spray Technology	
2 Cold Sprayed MCrAlYs	
3 Coating structures and oxidation behaviour	
4 Influence of feedstrock pre treatment	
5 Furnace Cycle Tests	
6 Effects of process parameters	
7 Conclusions	
Page 2 Thermal Parties Continen IV	
Page 2 Thermal Barrier Coatings IV	

Coa	iting systems a	ing systems and used processes			
	Process	System / Gun	Feedstock Powder Sprayed		
	Cold Spray	Sulzer Metco Kinetiks 8000	MCrAIY Bond coats (same composition as Amdry 995 series)		
	LPPS	Sulzer Metco F4-VB	MCrAIY Bond Coat (Amdry 9951)		
	APS	Sulzer Metco Triplex 210	Metco 204NS-G Top Coat		
Page 17	Thermal Barrier Coatings IV				

ay System & Spray Pa	rameters		œrli metco
Spray System	Kinetiks 8000	F4-VB	Triplex 210
Coating Type	Cold Spray	VPS	APS
	F	Parameters	;
Spray distance (<i>mm</i>)	60	275	150
Powder feed rate (g/min)	27	47	150
Primary Gas, Ar (<i>NLPM</i>)		50	50
Secondary Gas, H ₂ (<i>NLPM</i>)		9	5
Inlet Gas (N ₂) Pressure, (<i>bar</i>)	40		
Inlet Gas (N ₂)Temperature (^o C)	950		
Powder Carrier Gas, N2 (<i>m3/h</i>)	6		
Powder Carrier Gas, Ar (<i>NLPM</i>)		1.9	7.5

Chemical Composition of Cold Spray
Feedstock Materials

cerlikon metco

		Fe	edstock C	hemistry (V	Veight %)	
Element (A9951 TYPE)	BASE	FAC	1200V	1200A	1425V	1425A
Cobalt (Co)	Bal		Bal	Bal	Bal	Bal
Nickel (Ni)	31.62		31.45	31.66	31.40	31.30
Chromium (Cr)	20.52		20.42	20.59	20.40	20.38
Aluminum (Al)	7.86	sam	7.81	7.88	7.80	7.76
Yttrium (Y)	0.43	e as	0.41	0.44	0.46	0.45
Carbon (C)	0.01	bas	0.01	0.01	0.01	0.01
Sulfur (S)	<0.010	Õ	<0.010	<0.010	<0.010	<0.010
Oxygen (O ₂)	0.048		0.059	0.053	0.060	0.057
Nitrogen (N ₂)	0.005		0.006	0.006	0.006	0.006

Phase	ctructure			VOL%		
Fliase	Siluciule	BASE	1200V	1200A	1425V	1425A
NI-Co	Cubic		85.9	84 9	77	77.2
Ni _{0.65} Cr _{0.3} Al _{0.05}	Cubic		00.0	04.0		11.2
Ni _{0.65} Cr _{0.3} Al _{0.12}	Cubic	91.7				
Co _{0.8} 3AI _{0.17}	Cubic	• …				
Ni _{0.4} Al _{0.6}	Cubic	8.3				
Ni _{0.67} Cr _{0.66} Al _{0.67}	Cubic		9.5	10.5	22.5	22.8
NIAI	Cubic	<0.5	0,0	10.0	22.0	22.0
Cr _{o 20} Co _{0 62}	Hexagonal		4.6	4.6	0.5	<0.5

Kinetiks 800 Substrate :	00, 40 IN 718	bar, 950 ºC 3 plates					
Feedstock	DE	Roughness R_a (µm)	Bond Strength (Mpa)	Porosity (%)	oxide (%)	Macro-Hard (HR-15N)	Micro- Hardness (0.3kgf)
BASE	46	5.8	60.78	1.1	2.6	82.1	466
FAC	67	5.4	71.83	1.2	2.7	82.1	458.9
1200V	44	7.5	76.13	1.8	4.6	82.3	535
1200A	54	7.3	53.40	1.6	4.8	82.7	534.3
1425V	60	6.0	76.28	2.2	3.9	81.8	486.5
1425A	59	6.7	69.62	1.9	3.8	83.5	529.1

	ĸ	linetik 8000,	$N_2 40 ba$	ar	
Powder	Temp. (°C)	Roughness R_a (µm)	Porosity (%)	Oxide (%)	Micro hardness (HV0.3 kgf)
	800	9.6	2.6	2.8	430 ± 44
BASE	900	7.9	1.3	1.6	454 ± 38
-22+5 µm)	950	7.0	1.1	2.6	466 ± 32
	1000	5.1	0.9	< 1.0	480 ± 57

Coating F	œrlikon					
		Kinetik 8	000, N ₂ 4	0 bar		motoo
Powder	Temp. (°C)	Size (µm)	Ra (µm)	Porosity (%)	Oxide (%)	Micro hardness (HV0.3 kgf)
	800		14.2	3.6	1.2	405 ± 54
Coarse	900	-45+22	11.6	2.2	0.9	464 ± 42
	1000		12	3.7	1.9	437 ± 58
	800		11.7	2.5	1.2	446 ± 48
Mid	900	-38+11	10.7	2.4	1.5	443 ± 54
	1000		9.9	1.4	1.4	446 ± 54
				-		
	800		9.6	2.6	2.8	430 ± 44
Fine	900	-22+5	7.9	1.3	1.6	454 ± 38
	1000		5.1	0.9	< 1.0	480 ± 57
Page 30 Thermal P	Barrier Coatings IV					

		metco
TEST CONDITIONS		
Equipment CM	/ 12" Furnace	
Heat Time (min) 10		
Dwell Time (min) 40		🛁 [🥗]
Forced air cool time (min) 10		
Dwell Temp (°C) 113	35	

Coating Pro	Testing cerlikon metco		
Bond Coat (MCrAlY)	TOP Coat	#Samples	Average cycles to failure
Base		4	375
FAC		4	320
1200V		4	406
1200A	Metco	4	355
1425V	204NS-G	4	385
1425A		4	410
Amdry 9951 (VPS)		6	415

