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ABSTRACT 
In a generic porous matrix built by a large number of 

rectangular bars the flow is determined numerically by a 

DNS approach. Turbulent flow is thus simulated 

avoiding modelling in order to decide whether turbulent 

structures with scales much larger than the pore scale 

exist. So far only under-resolved DNS solutions are 

determined from which, however, definite conclusions 

with respect to the maximum turbulent length scale can 

be drawn.  

 

INTRODUCTION 
A flow in porous media is characterized by length scales 

of different magnitude. Assuming continuous fluid flow, 

i.e. no influence of the molecular nature of the fluid, the 

smallest relevant geometrical scale is the pore scale 

which typically can be an average hydraulic diameter of 

the pores. Next in the hierarchy of scales comes the size 

of a representative elementary volume (REV) in cases 

where pores are of very different individual size. For a 

homogeneous matrix with a regular pore structure of 

unique size in the Darcy flow regime this REV is of the 

order of the pore size itself.  

These considerations are important when it comes to the 

question of turbulent flow in porous media. For high 

enough pore scale Reynolds numbers there definitely 

will be a turbulent flow within the pores (since they 

basically are microchannels) after flow transition when 

the Reynolds number exceeds the critical Reynolds 

number of the micro-channel. This is the same situation 

as for microscopic flows through conduits (again 

assuming that there are no molecular effects, like slip 

velocity), see [1] and [2] for further details.  

There is, however, a controversy whether macroscopic 

turbulence with eddy sizes beyond the pore scale exists. 

From an extensive literature review two widely 

contradicting points of view can be found. They basically 

disagree with respect to the question whether or not the 

solid material of the porous matrix inhibits the formation 

of macroscopic eddies.  

The first view was originally expressed in Nield (1991) 

[3], p. 271, and then further developed in Nield (2001) 

[4]. According to this view, true macroscopic turbulence, 

at least in a dense porous medium, is impossible because 

of the limitation on the size of turbulent eddies imposed 

by the pore scale. Thus any turbulence in porous media is 

restricted to turbulence within the pores. 

The second class of models deals primarily with 

macroscopic turbulence in porous media. Representative 

models are those developed by Lee and Howell (1987) 

[5], Prescott and Incropera (1995) [6], and Antohe and 

Lage (1997) [7]. 

This crucial question about turbulence in porous media 

cannot be addressed by RANS (Reynolds averaged 

equations) and not even by LES (large eddy simulation) 

since then always turbulence modelling is involved 

which itself can be questioned. The only way to answer 

this question without ambiguity is to refer to the 

experiment or to DNS solutions (DNS: direct numerical 

simulation of the turbulent flow accounting for all scales 

up to the Kolmogorov scale). Since measurements within 

the porous matrix are more than challenging, DNS 

solutions appear to be the best alternative. 

Therefore we performed DNS investigations of the flow 

through a generic porous matrix described and discussed 

in the next section. 

 

NOMENCLATURE 
d = Obstacle size 

f = Particle distribution function 

i
g  =  Prescribed pressure gradient 

p  = Pressure 

ij
R  =  Two point correlation 

ij
R
~

 = Pseudo two point correlation 

ij
R̂  = Turbulent two point correlation 

Re =  Reynolds number 

s = Pore size 

i
u  = Velocity component 

x


 = Position vector 
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Greek Symbols 




 = Particle velocity vector 

  = Kolmogorov scale 

  = Kinematic viscosity 

 

Subscripts 

m = Mean 

c = critical   

 

1 The porous matrix 
 

1.1 The representative elementary volume for 

turbulent flow 

The concept of a representative elementary volume 

(REV) basically means to determine the smallest sub-

volume of a porous matrix that shows the same behavior 

with respect to the flow through it as can be observed in 

the whole matrix. In the introduction it was argued 

already that the REV of a regular matrix is of the order of 

the pore size when the flow is a Darcian flow (low 

Reynolds number, locally creeping flow) and the matrix 

is geometrically regular on the pore size. We call this 

REV-D and in addition introduce a representative 

elementary volume REV-T. This volume is one in a 

turbulent flow and will be larger than the REV-D when 

macroscopic turbulent eddies exist with sizes much 

larger than the pore size.  

The Crucial questions (so far for a regular porous matrix) 

are:  

 

 Which is the REV-T scale? 

 Is the REV-T much larger than the REV-D, i.e. are 

there macroscopic turbulent eddies in porous 

media? 

 

1.2 The generic porous matrix for a DNS analysis 

With the discussion about turbulence in porous media in 

mind we designed a generic porous matrix according to 

the three following assumptions:  

 

(1) The matrix may have a regular structure since the 

crucial effects on turbulence will not be a consequence of 

the irregularity of the matrix. 

 

(2) The matrix may be geometrically two dimensional 

since turbulence which itself is three-dimensional will be 

affected by the presence of a matrix itself, irrespective of 

its 2- or 3-dimensional nature.  

 

(3) The porosity in our model is relatively high since 

smaller porosity will result in stronger suppression of 

any macroscopic turbulence.  

 

Fig. 1 shows our generic porous matrix (GPM) built by a 

large number of bars arranged as periodic arrays forming 

a porous medium. Within this regular geometrical 

structure a representative volume REV-D is of size 2s 

while the size of REV-T is yet unknown. A strategy to 

find the REV-T can be to start with a large number of 

elementary bars (size: d), calculate the turbulent flow in 

that domain and then reduce the number of bars 

systematically. As long as the results in the reduced 

domain are those of the larger ones a further reduction is 

appropriate.  

 

 
Figure 1: Generic porous matrix (GPM) with the 

representative elementary volume REV-D and REV-T. 

 

2 DNS calculations in a porous medium 
 

2.1 Preliminary remark 

The only way to completely avoid turbulence modelling 

in CFD solutions (CFD: computational fluid dynamics) 

is to directly simulate the fluid flow, accounting for all 

relevant length and time scales. This approach is known 

as DNS, see [8] for a general introduction. Due to its 

enormous demand of computational resources (cpu time 

and storage capacity) only certain benchmark cases, like 

[9-11], or special fundamental problems like [12~14] can 

be handled by this method. 

 

2.2 DNS methods 

We use two very different numerical methods in order to 

compare the results as part of a verification procedure 

and also since they complement each other in certain 

aspects. They are 

 

 a finite volume method (FVM) to directly solve the 

Navier-Stokes equations  

 a Lattice-Boltzmann method (LBM) to determine 

the particle distribution which indirectly 

corresponds to solving the Navier-Stokes equations.  

 

Both methods have been tested against each other in [14] 

for the problem of a turbulent flow along a rough wall. In 

[14] wall roughness was composed of two-dimensional 

bars on an otherwise smooth wall ending up in a 

geometrical situation which in one dimension is very 

similar to the porous medium design shown in Fig. 1. 
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2.2.1 The finite volume method (FVM) 

The basic equations to be solved for the incompressible 

flow of a Newtonian fluid with a finite volume method 

are the Navier-Stokes equations. In Cartesian 

coordinates, nondimensionalized with d and um and using 

the Einstein summation convention, they read [15] 

    0




i

i

x

u
                                    (1) 
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2

2

Re

1
            (2) 

Here the Reynolds number is 



du
m

Re                                 (3) 

with 
m

u  and d according to Fig. 1 and   as kinematic 

viscosity of the fluid. 

When (1) – (3) are solved, the solution domain has to be 

the REV-T, see Fig. 1, extending in the third direction by 

a length 
3

L , see the discussion of that in section 3.3. 

Boundary conditions are periodic in all three directions 

since the REV-T is an arbitrary cutout with respect to the 

whole porous matrix. Periodic boundary conditions here 

mean that all flow quantities (except the pressure in flow 

direction) are equal on opposing surfaces of the REV-T. 

 

In Eq. (2), 
i

g  is the prescribed pressure gradient by 

which a particular flow rate is ensured. The solution of 

Eqs. (1) ~ (3) is advanced in time with the second order 

implicit backward Euler method. To compute the 

derivatives of the velocity, the variables at the interfaces 

of the grid cells are obtained with linear interpolation. 

With the solutions at the interfaces, a second order 

central difference scheme is gained for spatial 

discretization. The pressure at the new time level is 

determined by the Poisson equation. The velocity is 

corrected by the Pressure-Implicit with Splitting of 

Operators (PISO) pressure-velocity coupling scheme.  

 

2.2.2 The Lattice-Boltzmann method (LBM) 

This method statistically models the propagation and 

interaction of particles and thus simulates the flow. For 

small Mach numbers, the macroscopic velocities which 

then emerge are solutions of the Navier-Stokes 

equations.  

The basic equation for the LBM is a discretized version 

of the Boltzmann-Equation for the particle distribution 

function  txf ,,


 , which reads, see [16] 

                   









t

f

x

f




                            (4) 

Here  txf ,,


  determines the probability to find a 

particle with velocity 


 at a position x


 at a time t. This 

function f can be modified either by the motion of 

particles or by their collision which is determined by the 

collision operator   in Eq. (4). 

The Lattice-Boltzmann equation as a discretized form of 

the Boltzmann equation emerges after a discretization of 

velocity, space and time. For an isotropic behavior of the 

fluid the space can best be discretized by a uniform 

Cartesian grid. Then the discretizations of velocity and 

time have to be such that a particle travels exactly from 

one grid point to the next neighbor within one time step. 

Different macroscopic velocities now correspond to 

different probability distributions of the particle 

velocities. A standard grid for three dimensional motions 

of that kind, shown in Fig. 2, is called a D3Q19-grid, see 

[17] (D3: three dimensional Q19: 19 discrete velocities). 

    

3 Test solutions 
 

3.1 Underresolved DNS 

DNS solutions need numerical grids that are fine enough 

to resolve the smallest scales involved. Quite generally 

these smallest scales are of the order of the Kolmogorov 

scale 

4/1

4/3




                                   (5) 

where   is the kinematic viscosity of the fluid and   is 

the local dissipation rate of the flow. This scale strongly 

depends on the Reynolds number (roughly 
4/3

Re~


 ) 

so that DNS solutions quite generally are restricted to 

relative small Reynolds numbers.  

Since the main question of our study is about the large 

scales that occur in porous media flows we (in a first 

step) determine the size of the REV-T with so-called 

underresolved DNS solutions. These are solutions with 

numerical grids (
i

x : step sizes) for which 
i

x  is 

larger than 1. The underlying assumption is that the large 

scale motion is not critically influenced by missing small 

scales. This assumption is supported by the generally 

small backscatter (energy transfer from small to large 

scales) in turbulent flow but nevertheless have to be 

verified in a later study with the final solutions on grids 

that meet the Kolmogorov scale condition.  

 

3.2 Test cases 1 to 4 

Taking into account the requirements with respect to the 

REV-T as well as the computer resources available to us 

for a preliminary calculation we selected test cases 1 to 4 

with the parameters according to table 1. Quite generally 

we choose the obstacle size d as the geometrical unit 

scale and refer all geometric parameters to this d. Thus 

we do not fix the actual pore size but determine non-

dimensional results. They can be interpreted as different 

cases by assigning different values to the length d, for 

example d=1mm or d=0.1mm. All values are possible as 

long as the Navier-Stokes equations (which are solved in 

the incompressible limit assuming no slip at the solid 

boundaries) are an adequate theoretical model for the 

flow.  

As a first impression of the results Fig. 3 shows the 

turbulent structure of the flow in part of the solution 
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domain. Shown are surfaces of constant values Q=10. 

Details about this Q-value (which characterize and 

identify turbulent structures) as well as those about the 

two numerical methods employed are given in [14]. Fig. 

3 shows that at least for this value of Q no large scale 

structures can be identified.  

 

Table 1: Parameters of the test cases 1 to 4 

d: unit length 

500/Re  du
m

 for all cases 

Test 

case 

Pore 

size s 

Domain size Mesh resolution 

L1 L2 L3 M1 M2 M3 

1 2d 20d 20d 10d 280 280 140 

2 2d 12d 8d 4d 168 112 56 

3 2d 12d 4d 4d 168 56 56 

4 2d 16d 16d 8d 640 640 320 

 

3.3 Two-point correlations 

One way to detect turbulent structures and analyze their 

scales is to determine two point correlations in the flow 

field. By this technique one looks at two quantities of the 

same kind in the flow field which are a certain distance 
r


 apart. When these quantities are subject to fluctuations 

(like in a turbulent flow) their fluctuations with respect to 

the corresponding time mean value   will have 

positive and negative values alike.  

When a is such a quantity we write aaa   with 

0a  as a consequence of this splitting into time 

mean and fluctuating parts. When two such fluctuating 

quantities 
1

a  and 
2

a  are considered we have 0
1

a  

and 0
2

a  but it is an open question how 
21

aa   

behaves. When 
1

a  and 
2

a  are totally uncorrelated the 

chance of 
21

aa   to be positive or negative is the same and 

thus 0
21

 aa  holds. When, however, a physical 

correlation of whatever kind exists there will be a 

nonzero value of 
21

aa   indicating this correlation.  

This idea is behind the two-point correlations between 

the quantities  xa
i


  and  rxa

i


  at a certain time t also 

called two-point, one-time autocovariance, see [18], 

defined as  

     trxatxaxrR
jiij

,,,


                     (6) 

When  txu ,
1


  and  trxu ,

1


  are correlated we get  

     trxutxuxrR ,,,
1111111


                  (7) 

Fig. 4 shows such a correlation for test case 1, see table 

1, and  2,2,2
3211

LLLx 


, i.e. in the middle of the 

computational domain with r


 covering the whole 

domain. From the color coding it can be seen that there is 

a strong correlation next to the correlation point 
1

x


 but 

also one that is around each obstacle. This, however, 

turns out to be a pseudo-correlation due to the fact that a 

locally similar and in phase flow occurs around the 

individual obstacles, like it would happen in a purely 

laminar flow. 

 

 
(a) 

 
(b) 

Fig. 3: Flow field details shown by iso-surfaces Q=10, 

(a): Case 1, FVM, (b): Case 4, LBM 

 

The problem now is to distinguish this pseudo-

correlation from the turbulent correlation we are 

interested in. For that purpose we introduce a two-point 

lateral correlation defined as  

     terrxutxuxrrR ,,,
~

3311111,311


             (9) 

with 
3

e


 as unit vector in 
3

x -direction and r


 now being 

a vector within the  
21

, xx  plane. Assuming that the 

pseudo-correlation in the regular porous medium of our 

test cases is the same on all levels constr 
3

 we can 

subtract 
11

~
R  from 

11
R  and will get the turbulent 

u2 

u2 
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correlation provided 
3

r  is large enough. “Large enough” 

here means that the two correlation planes are far enough 

apart so that there will be no correlation due to large 

scale turbulent structures.  

Fig. 5 shows  
1111

~
RR   distributions for three values of 

3
r . In Fig. 5(a) with 2.0

3
r  the lateral correlation 

11

~
R  

obviously is affected by the large scale turbulent motion, 

so that  
1111

~
RR   also depends on it.  Once 

3
r  is large 

enough (Fig. 5(b) and (c)) there is no change in 

 
1111

~
RR   anymore, obviously because 

3
r  exceeds the 

length scale of the largest turbulent structures. What is 

left is the turbulent correlation  

     
13311111111

,,
~

,,ˆ xrrrRxrRxrR
c


           (9) 

with 
c

r
3

 being the critical value of 
3

r , up to which there 

is an influence of large scale structures. 

 

 
Fig. 4: Two point correlation 

11
R  in the computational 

domain of test case 1, correlation point 
1

x


 marked by the 

cross in the middle 

 

 
 

 
 

 

Fig. 5: Two point correlation  
1111

~
RR   in the 

computational domain of test case 1, correlation point 
1

x


 

marked by the cross in the middle. The zoomed contours 

inside the frame of Fig. 5a are shown in Fig. 6. 

(a) dr 2.0
3
  

(b) dr 5.3
3
  

(c) dr 5
3
  

 

Fig. 6 shows three points within the flow field as 

correlation points with 
1

x


 of Fig. 4 and 5 being one of 

them. The iso-surfaces with the same value of 
11

R̂  

around them show the correlation extension is of the 

same order of magnitude so that point 1 used so far can 

further on be taken as a characteristic correlation point. 

From Fig. 5 and 6 we draw (tentative) conclusion that 

large scale turbulent structures are restricted in size by 

the porous matrix and are of the order of the pore size. 

This definitely supports the first view mentioned in the 

INTRODUCTION which assumes that turbulence in 

dense porous media is restricted to turbulence within the 

pores.  (a) 

(b) 

(c) 
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In a more extensive study which is underway at the 

moment we are going to prove these tentative results by 

fully resolved DNS solutions. They need mesh resolution 

with up to 500 million grid points (in this study the 

maximum number of grid points was 130 million) and 

cpu times up to 100,000 hours (in the present study the 

maximum number of cpu hours was 30,000). 

 

 

Fig. 6 Iso-surfaces of 
11

R̂  at three points 

 

CONCLUSIONS 
Based on the (preliminary) results of our under-resolved 

DNS solutions we can tentatively conclude that turbulent 

structures in porous media flows are restricted in size to 

the scale of the pores. This conclusion can be drawn 

based on two-point turbulent correlations taking in 

account the effect of a pseudo correlation. This pseudo 

correlation is due to the regular structure of the generic 

porous matrix in our study.  
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