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ABSTRACT 
The nonlinear Fokker-Planck equation arising for one-
dimensional groundwater recharge through porous 
media, is in the form of partial differential equation 
which has been solved by using Homotopy Analysis 
method with the help of first approximate solution 

( )0 ,Z Tθ for given auxiliary parameter 0q = . The solution 
is physically interpreted and concluded that during one-
dimensional recharge through unsaturated porous media, 
the moisture content of the soil is parabolically 
increasing as depth Z increases for given 0T > . The 
graph of the solution is given by using Maple coding.  
 
INTRODUCTION 
The uses of analytical techniques for groundwater flow 
and mass transport in the unsaturated porous media has 
significant increasingly from last few years, and it has a 
great important for hydrologist, agriculturists and people 
related with water resources sciences. Analytical solution 
provides better insight into the physics behind the 
transport phenomenon and efficient to use. Analytical 
approaches are for the most limited to situations of 
simple geometry domains, linear governing equation and 
homogeneous porous media. Analytical solutions of the 
partial differential equation for unsaturated flow under 
various boundary and initial condition are difficult to 
obtain because of the nonlinearity in soil hydraulic 
parameters. Exact analytical solution typically requires 
specialized forms of the hydraulic conductivity and 
diffusivity functions for nonlinear diffusion-advection 
equation. Several investigators have described different 
relation between the diffusivity coefficient and 
volumetric water content problems in unsaturated porous 
media. In 1958 Gradner [6] model provides a 
relationship between the pressure head 'h' and the 
volumetric water content θ  as, ( ) bh aθ θ −= ⋅  where a & b 

are empirical constants. The exponential hydraulic 
conductivity function has been widely used, but it is 
known to have a limited range of application to many 
real soils. The Brooks-Corey model [4] is a relationship 
between the reduced water content *θ and the soil 

suction. The reduced water content *θ is defined as a 
function of two values of moisture: the saturation of the 
moisture 

sθ and the residual of the moisture
rθ ; * r

s r

θ θθ
θ θ
−

=
−

 

where 
r sθ θ θ< < , *0 1θ< < . According to Brooks-Corey 

model, the reduced water content *θ  has the following 
expression:  

* *

1

ae
ae

ae

h if h h
S h

if h h

λ

θ

−⎧⎛ ⎞
⎪ >⎜ ⎟= = ⎨⎝ ⎠
⎪ ≤⎩

  

where h is the pressure head, 
aeh  is the air entry suction 

of the reduce water content and *S is effective degree of 
saturation between zero and one [4]. The Van Genuchten 
model [17] provides a relationship between the saturation 
degree and the soil suction using three empirical 
constantα , n and m as, 

( )( )* * 1 0

1 0

mn ifS
if

αψ ψθ
ψ

−⎧ + >⎪= = ⎨
⎪ ≤⎩

 

Where parameter m and n are related by the relation: 
11m
n

= − . Other functions developed by Van Genuchten 

[17] are firmly established for practical applications. 
Such special forms of the hydraulic functions make it 
possible to linearize the governing flow equations, and 
hence solve them analytically. Solutions to the linearized 
unsaturated flow equations are limited to the steady flow 
in semi-infinite, homogenous soils (Broadbridge and 
White [3]; Warrick [19]) and to transient flow in 
homogeneous and layered soils (Srivastava and Yeh) 
[16]. The Broadbridge and White Model (1988) [3] has 
adopted a function form for the diffusivity given by 
Philip and Knight (1974) [6] which allow for the 
transformation of the soil water diffusivity ( )D θ as 
function has the form: 
  ( )

( )2
aD

b
θ

θ
=

−

                   (1) 

Where a and b are constant. As a second step in the 
solution of the nonlinear flow problem, Broadbridge and 
White (1988) [3] developed an expression for ( )K θ  that 
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in conjunction with the assumed function for ( )D θ  
transforms equation (8) to the weakly nonlinear Burger's 
equation. This expression for ( )K θ is given as: 

( ) ( ) ( )2
K b

b
λθ β γ θ
θ

= + − +
−                               (2)

 

where , andβ γ λ are constants. With the suggested 
analytical forms for ( )K θ , ( )D θ and the imposed 
boundary conditions, the Hopf-Cole transformations are 
applied to reduce a nonlinear equation to a linear form 
that possesses an exact parametric solution [3].  
Ground water recharge problem has discussed by many 
researchers with different viewpoints. Swartzendruber 
uses Philip’s [14] method to get graphical illustration of a 
mathematical solution for horizontal water function. 
Verma and Mishra [18] have obtained solution by 
similarity transformation of a one-dimensional vertical 
ground water recharges through porous media. Using 
singular perturbation technique, Mehta and coworkers 
[12] provided an approximate solution where the change 
in average diffusivity coefficient being very small; it has 
treated as constant. Hari Prasad et al. [7] had provided a 
numerical model to simulate water flow through 
unsaturated zones and studied the effect of unsaturated 
soil parameters on water movement during different 
processes such as gravity drainage and infiltration. 
Parikh, Mehta and Pardhan have obtained transcended 
solution of Fokker-Planck equation of vertical 
groundwater recharge in a dry region [13].  
 
NOMENCLATURE 
V = Volume flux of moisture  
S = Saturation of the soil 
 
Greek Symbols 
φ  = Porosity of soil 
ρ  = Density 
θ           =             Moisture Content of Soil 
ψ           =             Soil suction 

Subscripts 
s = bulk density 
 
Assumption and Mathematical Statement of 
the Problem 
The purpose of this investigated model is to discuss the 
approximate analytical solution of non-linear partial 
differential equation arising in ground water recharge 
phenomenon, to examine the moisture content in 
homogeneous porous media. The change in moisture 
content in porous media and distribution of pore pressure 
can be calculated using Homotopy Analysis method. Its 
solution provides the moisture content of the porous 
media (soil) at any depth Z at time T > 0. At any depth Z 
> 0, the graph of moisture content versus time T shows 
that the moisture content increases as time T increases. 

1 Mathematical Structure 
When water flow through unsaturated porous media in 
vertically downward direction, hydraulic conductivity is 
varies nonlinearly with the volumetric water 
content; ( )K K θ= .The variation of the hydraulic 

conductivity with the volumetric water content θ  in 
unsaturated homogeneous porous media for small 
Reynolds number the volume of flow of water described 
by Darcy’s law as [5], 

( )V K Hθ= − ∇
ur                                       (3) 
Where   V

ur = volume flux of moisture 
( )K θ = coefficient of the volumetric water content, 

H∇ = gradient of the whole moisture potential 
Such groundwater flow satisfies the equation of 
continuity as follows,  

( )s S M
t
ρ φ∂

= −∇
∂

                   (4)                        

Where 
sρ  is the bulk density of the soil on dry weight 

basis, M is the mass of flux of the water at any time 0t ≥ . 
Considering that water is incompressible, M Vρ=

r  and 
the water content of the soil is given by standard relation 
with saturation of soil S as  Sθ φ=  [3]. 
Where φ   is porosity and S is a saturation of the soil. 
Equation (4) reduces to,  

( ) ( )s V
t
ρ θ ρ∂

= −∇
∂

ur                           (5) 

Where ρ is the flux density. 
Using equation (3) in (5), we get  

( ) ( )( )( )s K H
t
ρ θ ρ θ∂

= −∇ − ∇
∂

                  (6)                        

It is also considered here as that the flow takes place only 
in vertical downward direction [17], equation (6) reduced 
to, 

( )s
HK

t z z
θρ ρ θ∂ ∂ ∂⎛ ⎞= ⎜ ⎟∂ ∂ ∂⎝ ⎠

                  (7)                        

In unsaturated soil instead of pressure head h one 
introduces, the soil suction ψ by negative forces of 
capillary and pressure head is negative hψ = . For reduced 
water content, only the soil suction matter. The water 
thus moves inside the unsaturated soil from a point 
having a greater pressure head (or a lower suction value 

hψ = ) to another point by a smaller pressure head (or a 
greater suction), until these values become equal. For 
unsaturated porous media, H is total soil moisture 
potential: H gzψ= − , where ψ  is the pressure potential 
(soil matric suction), z is the elevation in the vertical 
downward direction of flow, and g is gravitational 
constant.  Hence equation (7) will be, 

( ) ( )
s s

K
K g

t z z z
θθ ρ ψ ρθ

ρ ρ
∂∂ ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                 (8)                        

The equation (8) can be written as, 

( ) ( )
s

gD K
t z z z
θ θ ρ θθ θ

ρ
∂ ∂ ∂ ∂⎛ ⎞ ′= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠     

(9)  
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Where z is depth in vertical downward direction, t is 
time, ( ),z tθ  is volumetric soil water content, 

( )
s

KD ρ ψθ
ρ θ

∂
=

∂
 is called the diffusivity coefficient, ( )K θ  

is the coefficient of the volumetric water content 
and ( ) dKK

d
θ

θ
′ = . 

The expression in equation (9) is θ  dependent equation. 
Generally θ  dependent equation is called one dimension 
Fokker-Planck equation. This equation (9) is a model 
based on Darcy-Buckingham approach in vertical 
downward direction flow of water in unsaturated porous 
media.  
For the sake of convenience, the moisture contents 
consider in uniform soil take place in positively 
downward direction from z = 0 top of the bottom z = L 
where water table is saturated as shown in figure 1. We 
consider following new independent variables 

,
s

z gZ and T t
L L

ρ
ρ

= =  has been introduced to simplify the 

equation (9) as,  

( ) ( )D K
T Z Z Z
θ θ θε θ θ∂ ∂ ∂ ∂⎛ ⎞ ′= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

                (10) 

Where s L
g

ρε
ρ

=   is an auxiliary parameter. As given by 

Broadridge and White model (1988) [3]; the soil water 
diffusivity ( )D θ and hydraulic conductivity ( )K θ from 
equation (1) and (2) are written as 

( )
2

2 2

21 1a aD
b b b b

θ θθ
−

⎛ ⎞ ⎛ ⎞= − = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

               (11) 

and 

( ) 22 2
K b

b b
δ δθ β γ γ θ⎛ ⎞= + + + −⎜ ⎟

⎝ ⎠
               (12) 

Where a, b, , andβ γ λ are constants.  
Using equation (11) and (12) in (10), we get 

( )3 22
2

a b
T b Z Z b Z
θ θ δ θε θ γ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞= + − −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

              (13) 

The equation (13) is nonlinear second order partial 
differential equation which governs moisture content of 
soils for the one-dimensional unsteady flow in 
unsaturated porous medium in a downward direction. For 
one-dimensional Fokker-Planck diffusion-convection 
equation in vertical groundwater recharge problem, let’s 
assumed that the moisture content of the soil at top a 
large basin is 

cθ .  It is necessary to choose appropriate 
boundary and initial condition to solve the equation (13). 
Hence we choose the appropriate boundary and initial 
conditions, 
( )0, cTθ θ= , for any T > 0                             (14) 

At the top of a dry region, the moisture content of 
homogeneous soil is cθ  
The initial condition as, 
( ),0 Z

cZ eθ θ= , for any Z > 0   
                     (15) 

Since initial moisture content of the homogeneous soil is 
Z

ceθ (very small) for Z > 0 and T = 0 is very near to top of 
matrix. 
 Equation (13) rewritten as,        

2 2 2

2 2A B A C
T Z Z Z Z
θ θ θ θ θε θ

⎡ ⎤∂ ∂ ∂ ∂ ∂⎛ ⎞= + + −⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎢ ⎥⎣ ⎦               

(16) 

 Where 
3

2aA
b

= ,
2

aB
b

=  and 
22

C
b
δ γ⎛ ⎞= −⎜ ⎟

⎝ ⎠
. Since moisture 

content θ   is increasing as depth Z increase for T > 0. It 
appropriate to choose guess value of moisture content of 
the solution as, [10] 

( ) 1Z,
4

Z
cT e ZTθ θ⎛ ⎞= +⎜ ⎟

⎝ ⎠
                             (17) 

2 The Solution with HAM 
Let ( ), ; 0Z T qΝ Θ =⎡ ⎤⎣ ⎦

denote a nonlinear equation, Θ  be a 

function of homotopy parameter q, whose Maclarian 
series  

( )
0

, ; ( , ) m
m

m

Z T q Z T qθ
+∞

=

Θ = ∑
                               (18) 

Where Ν  is a nonlinear operator, ( ), ;Z T qΘ  is considered 

as unknown function that represent moisture content θ at 
any depth Z for given time 0T ≥ for0 1q≤ ≤ .  We use 
auxiliary linear operator Tℑ = ∂ ∂  and initial 
approximation of moisture content of the soil is 

( ) ( )0 , 1 ZZ T e Tθ −= − to construct the corresponding zeroth-

order deformation equation. As the auxiliary linear 
operator which satisfies [ ]1 0Cℑ = , where 1C  is arbitrary 
constant.  We construct a homotopy as [10], 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ){ }

0

0

, ; ; , , , , ,

1 , ; , , , ;

Z T q Z T H Z T q

q Z T q Z T q H Z T Z T q

θ

θ

Η Θ⎡ ⎤⎣ ⎦

= − ℑ Θ − − Ν Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

h

h            

(19) 

Enforcing the Homotpy (19) to be zero [10],  
( ) ( ) ( )0, ; ; , , , , , 0Z T q Z T H Z T qθΗ Θ =⎡ ⎤⎣ ⎦h  

Establish the zero-order deformation equation of 
moisture content as [10],  
( ) ( ) ( ) ( ) ( )01 , ; , , , ;q Z T q Z T q H Z T Z T qθ− ℑ Θ − = Ν Θ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦h          

(20) 

Where 
0 ( , )Z Tθ  denote a guess value of the exact solution 

( , )Z Tθ which we want to find, 0≠h is an auxiliary 
parameter, ( , ) 0H Z T ≠ is an auxiliary function, [ ]0,1q∈  is 
an embedding parameter and ℑ is an auxiliary linear 
operator with the property 

( ), ; 0Z T qℑ Θ =⎡ ⎤⎣ ⎦
when ( ), ; 0Z T qθ =     

When 0q = , the zero-order deformation equation (20) 
becomes 

( ) ( )0, ;0 , 0Z T Z Tθℑ Θ − =⎡ ⎤⎣ ⎦
                (21) 

This gives, 
( ) ( )0, ;0 ,Z T Z TθΘ =                              (22) 

When 1q = ,since 0≠h , ( , ) 0H Z T ≠  the zero-order 
deformation equation (20) is equivalent to 

( ), ;1 0Z TΝ Θ =⎡ ⎤⎣ ⎦
                 (23) 
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This is exactly the same as the original equation, 
provided 
( ) ( ), ;1 ,Z T Z TθΘ =                               (24) 

According to (22) and (24) as the embedding parameter 
q  increases from 0 to 1, solution ( ), ;Z T qΘ  varies 
continuously from the initial guess ( )0 ,Z Tθ  of the 
moisture content of soil to the solution ( ),Z Tθ , and its 
solution is assumed as,  

( ) ( )
1

, ; , ;0 ( , ) m
m

m
Z T q Z T Z T qθ

∞

=

Θ = Θ +∑                (25) 

Where ( )
0

, ;1( , )
!

m

m m
q

Z T q
Z T

m q
θ

=

∂ Θ
=

∂
              (26) 

i.e. the moisture content of the soil is a function of depth 
Z, and time T for any parametric value q  . The moisture 
content of the soil at top of large basin ( ), ;0Z TΘ and sum 
of moisture contents of the soil at different depth layer 
for different value of parameter q  is expressed as, 
moisture content at time 0T = , ( )0 Z,Tθ  and sum of 
moisture content  ( )1 Z,Tθ , ( )2 Z,Tθ ,… at different time T. 
Here, the series (25) is called homotopy-series and 

( )Z,m Tθ  is called the mth-order derivative ofΘ . 

Auxiliary parameter h in homotopy-series (25) can be 
regard as iteration factor and is widely used in numerical 
computations. It is well known that the properly chosen 
iteration factor can ensure the convergence of homotopy 
series (25) depends upon the value of h , one can ensure 
that convergent of homotopy series, solution simply by 
means of choosing the proper value of h  as shown by 
Liao [8, 9, 10, 11].  If the auxiliary linear operator, the 
initial guess, the auxiliary parameter h , the auxiliary 
function ( ),H X T are so properly chosen, the series (25) 
converges at 1q = . If at q = 1 it is equivalent to the 
original equation ( ), ;1 0Z TΝ Θ =⎡ ⎤⎣ ⎦

 . 

Hence the moisture content of soil can be expressed as,  

( ) ( )
1

0
, , ; ( , )mq

m
Z T Z T q Z Tθ θ

+∞

=
=

= Θ =∑
             

(27)  

Equation (27) be one of the solution of the original 
equation (12) of the moisture content of soil and besides 
its solution obvious at q = 0. The series (27) is called 
homotopy series solution of ( ) ( ), ;1 ,Z T Z TθΝ Θ =⎡ ⎤⎣ ⎦

. 

According to the definition (26), the governing equation 
can be deduced from the zero-order deformation 
equation (20). Define the vector 

( ) ( ) ( ){ }0 1, , , ,... ,n nZ T Z T Z Tθ θ θ θ=
r  

Differentiating equation (20) m times with respect to the 
embedding parameter ε  and then setting 0q = and finally 
dividing them by !m , we have the so-called mth order 
deformation equation of the moisture content θ   will be 
as,  

( ) ( ) ( )1 1, , ( , ) , ,m m m m mZ T Z T q H Z T R Z Tθ χ θ θ− −ℑ − =⎡ ⎤⎣ ⎦
r

h             
(28) 

Where 

( ) ( )
( )1

1 1

0

, ;1, ,
1 !

m

m m m

q

Z T q
R Z T

m q
θ

−

− −

=

∂ Ν Θ⎡ ⎤⎣ ⎦=
− ∂

r

  
And, 0, 1

1, 1m

m
m

χ
≤⎧

= ⎨ >⎩   
It should be emphasized that ( ),m Z Tθ  for 1m ≥  is 
governed by the linear equation (26) with the linear 
boundary condition that come from the original problem, 
which can solve by symbolic computation  software 
Maple as bellow. The rule of solution expression as given 
by equation (16) and equation (20), the auxiliary function 
independent of q  can be chosen as ( ), 1H X T =  [10]. 
According to (24) and taking inverse of equation (28) the 
equation (28) become, 

( ) ( ) ( )1
1 1, , , ,m m m m mZ T Z T R Z Tθ χ θ θ−
− −

⎡ ⎤= + ℑ ⎣ ⎦
r

h
  

( ) ( )1

1 1

, ;1, ,
!

m

m m m

Z T q
R Z T

m q
θ

−

− −

∂ Ν Θ⎡ ⎤⎣ ⎦=
∂

r

  
In this way, we get ( , )m Z Tθ  for 

1, 2,3...m = successively by using Maple software as, 

( ) ( )2 2 2
1

1, 6 12 12 12 96 48 96
48

Z Z Z Z Z
c c c c cZ T T T e TZ e T T Z e e eθ ε εθ εθ εθ εθ θ= + + − − + + −h

                                                                        
(33) 

( )

2 2 2 2 2 2

2 2 2

2 2 2 3 2 3
2

96 256 384 448 768 96

96 192 1536 24 96 768 3072
1, 96 8 48 768 384 3456 192

384
9

Z Z Z Z Z
c c c c c

Z Z Z Z
c c c c

Z X Z Z Z
c c c c c

T e Z T e e T e T e Z

Z T e T e TZ e T e

Z T e T T e TX e e T e T

εθ εθ εθ ε θ θ

θ ε εθ θ εθ

θ εθ ε εθ εθ εθ θ ε

− − − + + +

+ + + − − + −

= − − − − − + +

−

h h h h h

h h h h

h h h
2 2 3 2 2 3 2 2 2 2 2

2 2 3 2 2 2 2 2 2 2

60 768 3 18 320

48 20 128 230 192

Z Z Z Z Z
c c c c c

Z Z Z Z Z
c c c c c

e T e T X e T Z e T Z e

T e Z T e T e T e T e

εθ εθ ε θ ε θ ε θ

ε θ θ ε ε θ ε θ ε θ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− + + +
⎜ ⎟
⎜ ⎟+ + + + +⎝ ⎠

h h h h h

h h h h h

                                                                   (34)                             
…………. 
Using initial guess value of moisture content from 
equation (17) and successive moisture content form (31) 
and (26) etc. and using in equation (28), we get  

2

2 2

2 2 2 2 2 2

2

6 12 121 1
4 48 12 96 48 96

96 256 384 448

768 96 96 192 1536 24
( , ) 96 768 30

1
384

Z Z
c cZ

c Z Z Z
c c c

Z Z Z Z
c c c c

Z Z
c c
Z Z

c c

T e TZ e T T
e TZ T

Z e e e

T e Z T e e T e

T e Z Z T e T
Z T e TZ e

ε εθ εθ
θ

εθ εθ θ

εθ εθ εθ ε θ

θ θ ε
θ εθ θ

⎛ ⎞+ + − −
+ + +⎜ ⎟⎜ ⎟+ + −⎝ ⎠

− − − +

+ + + + + −

= − + −

h

h h h

h h h

h h 2 2

2 2 2

3 2 3 2 2 3 2 2

3 2 2 2 2 2 2 2

3 2 2 2 2 2 2

72 96

8 48 768 384 192

3456 960 768 3
18 320 48

20 128 230 192

Z Z
c c

X Z Z
c c c

Z Z Z Z
c c c c

Z Z Z
c c c

Z Z Z
c c c

T e e T

T e TX e e T

T e e T e T X e
T Z e T Z e T e Z

T e T e T e T

εθ εθ

ε εθ εθ εθ

θ ε εθ εθ ε θ

ε θ ε θ ε θ

θ ε ε θ ε θ

−

− − − − +

+ − − +

+ + +

+ + + +

h

h h

h h h h

h h h

h h h h 2

....

...Z
ceε θ

⎧ ⎫
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     (35)
 

Where ( ) ( )1 2, , , ,...Z T Z Tθ θ are given by equation (33) and 
(34) respectively represents moisture content of the soil 
at any time T  for vertical direction depth Z for 0T > . 
The solution is an infinite series solution, which 
represents the approximate value of moisture content for 
time 0T > . It is convergent at 1q =  for auxiliary 
parameter 0.1=h  

3 Numerical and Graphical Solution 
As mentioned by Liao [10], the use of auxiliary 
parameter h brings a dramatic advantage. It should be 
noted that the auxiliary parameter h controls the 
convergence and accuracy of the solution series. The 
solution represented by (35) contains the auxiliary 
parameter hwhich gives the convergence region and rate 
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of approximation for the Homotopy analysis method. In 
order to define the region such that the solution series is 
independent ofh , multiple curves are plotted. The 
region, where the moisture content of soil 
( ) ( ) ( ) ( )' , , '' , , ''' , ,ivZ T Z T Z T and Z Tθ θ θ θ  verse h  is the 

horizontal line known as the convergence region for the 
corresponding function. The common region among 

'( , )Z Tθ , ''( , )Z Tθ , '''( , )Z Tθ  and ( , )iv Z Tθ are known as 
overall convergence region. Figure (2) indicate that the 
valid region of h  is about -5.0 to 1.0. Similarly, it can 
find the value of the convergent control parameter h  for 
different values of constant parameters [10]. 

 
Figure 2: the h -curve of '( , )Z Tθ , ''( , )Z Tθ  '''( , )Z Tθ and 

( , )iv Z Tθ  given by (35) when H(Z, T) =1. 
The numerical and graphical presentation of equation 
(35) in the present work has been carried out using 
Maple coding. Figure 3 represents the graphs of moisture 
content ( , )Z Tθ  vs. depth Z, for T = 0.1, 0.2, 0.3, 0.4, 0.5, 
0.6, 0.7, 0.8, 0.9, 1.0 for fixed value 0.1cθ =  and 

0.2 2 0.408163 0.4
0.1 9.8

s L
g

ρε
ρ

×
= = = ≈

×
are fixed, and Table I 

indicates the numerical values.   
TABLE I: Moisture content ( , )Z Tθ  for different depth Z 
for fixed time T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 

1.0. 

 

 
Figure 3: Represents moisture content ( , )Z Tθ  vs. 
depth Z for auxiliary parameter 0.1=h  and auxiliary 

function ( , ) 1H Z T = when depth 0 1Z≤ ≤ , time 0 1T≤ ≤ , 
0.1cθ =  and   0.4ε ≈ are considered.  

 
CONCLUSIONS 
The equation (35) represents moisture content of the soil 
for any depth Z for any time 0T > . It is converges for 
embedded parameter 1q = and for auxiliary parameter 

0.1=h which is expressed in term of exponential terms of 
Z and time 0T > . The moisture content θ find out from 
guess value of the exact solution for 0Z = , T=0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0. The figure number 3  
of solution for moisture content θ  vs. depth Z and time 
T shows that the moisture content of the soil is increasing 
as depth Z increasing from 0 to 1 and 0T > . From figure 
2, it can conclude that for T=0.1 moisture content of soil 
is linearly increasing as depth Z increasing but when 
time T is increasing and due to different deformation 
added to θ , the moisture content of soil is successively 
increasing parabolically. Hence solution is graphically as 
well as physically consistent with the phenomenon. From 
figures 3 and analytical result (35), It’s concluded that 
the moisture content of soil is increasing when depth as 
well as time increases.  
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