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ABSTRACT 
 
An attempt is made in this study to quantify the effect of 
convergence on macroscopic scale in the case of flow 
through porous media. Experiments are conducted 
separately on specially conceived parallel flow 
permeameter and converging flow permeameter keeping 
identical inlet and outlet conditions, using eight sizes of 
coarse granular media and water as the fluid medium. 
The media is sieved through sieves of different sizes to 
separate the crushed rock into sizes of 3.25 mm, 4.73 
mm, 10.00 mm, 11.64 mm, 13.10 mm, 20.10 mm, 28.90 
mm and 39.50 mm and glass spheres of 15.41 mm, 18.03 
mm and 28.37 mm. As the effect of convergence is 
predominant in non- Darcian zones of flow, such as flow 
near the well, flow through rock fills, filters etc.,, the 
scope of the present work is restricted to flow regime 
with Re > 10.  (After Kovacs) Forchheimer’s equation     
( i  =  aV + bV2 ) is applied to analyze the experimental 
data. Equations are derived for Darcy parameter (a) and 
Non-Darcy parameter (b) of the Forchheimer’s equation 
for the crushed rock and glass spheres by relating to size 
of the media (d) in both parallel flow condition and 
converging flow condition. From the results it is inferred 
that for a given rate of flow through a known size of 
aquifer having predetermined grain size, the resistance to 
flow is higher in the parallel flow compared to similar 
media conditions in converging flow configurations. A 
comparison is then made between the coefficients of the 
equation, computed for parallel and converging 
configurations of flow. The difference in these values is 
expressed in terms of a factor called ‘Integrated 
Convergence factor (Cfi)’. It is concluded that the 
convergence of stream lines of seepage flow has a clear 
and profound influence on the relationship between 
resistance and regime. In order to make the findings 
reliable and suitable to field applications, the derived 
expressions are subjected to corrections for porosity 
effect, wall effect and tortuosity effect. Expressions for 
integrated convergence factor for crushed rocks and glass 

spheres are   Cfi = 1.095 d - 0.079 and Cfi = 0.802 d - 0.25 
respectively. 
 
INTRODUCTION 
 
In view of the significant contribution made by 
groundwater resources to water supply, any fact 
contributing to a greater understanding of the problems 
relating to groundwater flow is of prime concern.  Ever 
since Darcy described his experiments in 1856, the 
occult subject of seepage flow has been subjected to 
continuous exploitation in both theoretical and 
experimental aspects. A steadily increasing interest has 
been created during the past century to study laws 
governing the flow of fluids through beds of granular 
media. Coupled with ever increasing demand for 
information brought about by the advances in technical 
sciences, many theoretical and experimental 
investigations have been carried out to establish the true 
relationship among different variables.  
The concept of seepage flow and the final results are 
needed not in one discipline but in many diversified 
fields.  Extraction of water from artesian basins by deep 
wells is a problem of in the flow of liquids through 
porous rocks or sands. In ground water hydrology it is 
needed to design the water supply, irrigation and 
drainage systems; in petroleum engineering gas and oils 
are to be developed from the underground reservoirs. 
Behavior of seepage flow is equally important in some 
specific applications in Civil Engineering, such as design 
of filter beds; flow through, around and beneath 
hydraulic structures. Study of diffusion and flow of 
fluids through materials such as bricks and porous 
earthen ware has been a problem in the ceramic industry.  
Scientific treatment of problems of irrigation, soil 
erosion and tile drainage is still open to further 
development.  
It is common practice to solve these problems using 
Darcy’s law, which is expressed as  
  V = ki     (1) 
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where V = superficial velocity of flow, k = permeability , 
i = hydraulic gradient. 
 
It is generally accepted that Eq.(1) is valid for low 
Reynolds Numbers and at higher values of Re the linear 
relationship between V and i no longer holds good and 
exhibit non-linear relationship. Further, the non-linear 
nature of variation between hydraulic gradient and 
velocity of flow becomes more pronounced as the 
velocity increases rapidly when the boundaries are of 
converging configuration. Some field situations wherein 
the use of such non-linear relationship becomes 
necessary, in converging boundaries, are:  
i.    flow through filters used in water purification plants, 
ii.   flow through rock fill banks and dams with inbuilt  
      spillways,  
iii.  flow in the area adjacent to pumping well, especially  
      in a coarse grained aquifer,  
iv.  flow in the filter packs of tube wells.  
 
For the sake of simplicity and to avoid cumbersome 
expressions, in general, the streamlines representing the 
direction of flow are assumed to be parallel, though such 
are less in common. They either will be converging or 
diverging.  

 
An attempt is made in this paper to study the effect of 
convergence on the flow pattern and relating it to flow 
behavior. Quantification of this factor in terms of 
measurable parameters is included.  
 
1 Forchheimer Equation 
Forchheimer from his experiments on sand model for 
well flow was the first to propose an equation covering 
linear and non-linear ranges in a quadratic form as 
 
 i = aV + bV 2    (2) 
 
in which a and b are coefficients determined by the 
properties of the fluid and porous medium  and are 
known as Darcy and non- Darcy parameters.  It is 
obvious form the above equation that ‘aV’ represents the 
rate of energy loss in the linear regime and ‘bV2’ is that 
obtained in fully developed turbulent regime. Equation 
(2) was later refined by adding a third term as 
 

i = aV + bV2 + c V3                (3) 
A form proposed was 
        
             i = aV + bV2 + c V1.5                              (4) 

 
The third term in Eqs.(3) and (4) accounts for transitional 
conditions of flow. 
Equation (2) was further generalized to contain a time 
dependent term after Polubarinova – Kochina as 
      dv  

i = aV + bV2 + c    -----  (5) 
      dt 

For steady flow conditions, Eq.(5) reduces to Eq.(2). 
Though Eqs. (3) and (4) seem to be the more 
representative ones containing linear, turbulent and 
transitional regimes, according to Mc Corquodale 
(1969), this equation was slightly better than the two 
term equation. According to him, in the range of 
Reynolds number 600-4000, Eq. (3) was found to yield 
almost the same values of i  as those computed using Eq. 
(2). A lot discussion can be found on different forms of 
Forchheimer Equation in the available literature. In 
general, the form represented by Eq.(2) is widely in 
computations because of its simplicity and reliable 
accuracy from the field point of view. In the present 
study also Eq.(2) is used to analyze the experimental data 
obtained from parallel and converging flow 
permeameters.  
 
 
2 Experimentation 
2.1 Permeameters 

In order to achieve the objective of quantification of 
effect of convergence, two specially conceived 
permeameters viz.,  parallel flow and converging flow 
permeameters, were fabricated, the details of which are 
presented in Figs. 1 and 2.  
 
Parallel flow permeameter (Fig.1), a G.I. column with 
150 mm internal diameter , has a constant section 
through out the length of 6000 mm. The test section is 
confined to central 5000 mm with allowances of 500 mm 
each at the entrance and at the exit of the section. This is 
done to avoid possible effects of turbulence, due to the 
presence of porous screens kept at the entrance and exit. 
It may be found, in the past studies that only one test 
length is taken for computing hydraulic gradient. In the 
present study, three sets of test lengths are considered for 
computing average hydraulic gradient, which is expected 
to take into account the possible non-uniform packing of 
media in the permeameter. A row of piezometers 
provided on the surface of permeameter enabled noting  
down the head loss readings. 
 
Converging flow permeameter (Fig.2) with a central 
angle of 0.70 rad (40.700) and 500 mm wide                    
( perpendicular to plane of paper) has front and rear faces 
made of 12.50 mm thick Perspex sheet. The tapering 
sides of permeameter are made of 6.0 mm M.S. Sheet, to 
which bearings were fitted to facilitate overturning and 
thus to fill or remove the porous media.  Two curved 
perforated screens with more than 85% perforations were 
placed one each at the entrance and exit of the section 
facilitated radial flow and uniform spreading of the flow 
through the media. A row of piezometers was provided 
along the front face of the permeameter to note down the 
head loss readings.      
 
In both the cases, header tanks ensured turbulent-free 
entry of water into the test section. Horizontal perforated 
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pipes fitted at the exit end of delivery pipe, allowed 
water to fall in the form of shower instead a single thick 
jet, to ascertain the uniform entry conditions at the entry 
of the permeameter form the header tank.  Two valves of 
75 mm dia  are fitted at the supply point and discharge 
end of the permeameter to regulate the flow through the 
permeameter. Further, at the discharge end, a bypass 
valve is provided to facilitate fine regulation of low and 
to maintain steady conditions. Using a pre calibrated 
triangular notch discharges were recorded to an accuracy 
of +0.25% at higher heads and to an accuracy of + 2.50% 
at lower heads.   

 
              
               Figure 1  Parallel  Flow Permeameter 
 
 

 
           
          Figure 2  Converging Flow Permeameter 
 
 
 
 
 
 
 

 
3 Determination Of Media Parameters   
3.1 Size 
Crushed rock of 3.25 mm, 4.73 mm, 10.00 mm, 11.64 
mm, 13.10 mm, 20.10 mm, 28.90 mm and 39.50 mm and 
glass spheres of 15.41 mm, 18.03 mm and 28.37 mm size 
are used as media. In the present analysis, ‘volume 
diameter’, that is, diameter of a sphere having same 
volume as that of the irregular shaped particle, is used to 
denote the size of the  medium and it is  determined by 
water displacement method.  
 
3.2 Porosity  
It is a very sensitive parameter in porous media flow. It is 
determined as follows: Permeameter is cleaned, dried 
and then filled with the medium of known size up to the 
top. Outlet valves are closed and the permeameter is 
slowly filled until water level reaches the lowest 
piezometer. A measured quantity of water is then poured 
till water reaches top piezometer. This measured volume 
of water indicates the volume of voids between top and 
bottom piezometers. From geometry, volume of the 
permeameter enclosed between these two piezometers is 
computed from which porosity is computed.  
 
4 Experimental Procedure  
Permeameter is filled with the medium, under gravity, 
ensuring even packing by varying height of fall 
uniformly. Water is then allowed to flow through the 
permeameter under a constant head for a period of 1 to 
1.5 hours at maximum possible rate so that all the 
particles are reoriented and no further reorientation takes 
place during experimentation. Before taking the 
piezometer readings, it is ensured that all the entrapped 
air is removed. Once the flow attains steady state 
conditions, discharge and the corresponding head loss 
readings are noted. As the water level in the piezometer 
fluctuates, three pairs of maximum and minimum 
readings are taken and difference in average of these 
readings is taken as the head loss. During every run, 
temperature of the outflow is noted, from which viscosity 
is determined.  
 
4.1 Velocity of Flow  

Velocity of flow is the basic dynamic dependent variable 
which controls the entire analysis. In the case of 
converging flow, area of cross section varies along the 
length of travel and hence, velocity of flow becomes 
space dependent. At any radius rc from the centre of 
convergence, the superficial velocity of flow (V) is given 
by,     

cA
QV =                       (6) 

in which   Ac =  rc . θ . w                (7) 
where Q = discharge , Ac = Area of flow at a section of 
radius of convergence, rc, from the centre of 
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convergence, θ  = Central angle of convergence in 
radians ; w = Width of flow between two parallel 
confining surfaces. 
 
4.2 Hydraulic Gradient  
 
In the case of converging flow, as velocity varies from 
point to point, hydraulic gradient also is a spatial 
function. Therefore, a separate procedure is needed to 
compute the hydraulic gradient at a point, unlike parallel 
flow conditions, wherein its value is assumed to be 
constant.   
 
Head loss (dhL) over a length (dx) may be written as,  

                   
p

n

L dg
Vdxfdh

2
1=    (8) 

where dp is the pore diameter, g is gravitational constant  
and f1 is friction coefficient.   
 
The left hand side of the above equation represents the 
hydraulic gradient as a function of distance of travel x.  
Therefore,  
 
  iX   =   K1  emX                 (9) 
 
The values of K1 and m are obtained from experimental 
data by the method of least squares for a given size of the 
medium and for a known rate of flow. 

 

5 Analysis Of Experimental Data And 

Results 
 
5.1 Analysis Of The Data Obtained From Parallel 

Flow Permeameter:  

Various steps followed in this study are in the following 
order: 

(i) Grouping of experimental data into Darcy and non-
Darcy regimes.  

(ii) Verification and ascertaining reliability of trend of 
present experimentation with that of past. 

(iii) Examining the applicability of Forchheimer 
equation to the data and to study variation of the 
coefficients a and b with size of medium. 

(iv) Estimation of porosity, wall and tortuosity 
corrections and incorporating the modifications 
necessary in the equations developed therein. 

 

Of all the forms, most widely used form is that proposed 
by Forchheimer , which is  
  

                     i  =  aV + b V2              (10)
             
 or i/V = a  +  b V                            (11)
             
which is similar in form to  
  Y =  co  +  mo x              (12)
    
which is an equation of a straight line. 
  
Comparing corresponding terms of Eqs. (11) and (12), 
when a plot is made between i/V on y-axis and V on x-
axis, then the data must lie along a straight line, with 
linear parameter a equal to y-intercept (i/V intercept) and 
non-linear parameter b is equal to slope of (i/V vs V) 
line. 

Data obtained from present study and the studies 
conducted by Nasser (1970) and Niranjan (1973) have 
been combined and analyzed to obtain a relationship 
between size of the medium and the coefficients a and b 
for coarse media. Application of Forchheimer equation 
for the data with  Re > 10 is examined. Corrections for 
porosity, wall and tortuosity effects are applied to 
experimental data. Once again, for these corrected 
experimental data, Forchheimer equation is applied. 
Expressions relating Darcy and non Darcy parameter 
with size of the medium have been obtained. 
 
Parameters apc and bpc for coarse granular media are 
related to size d by the equations  : 
 
       0.0053 
 (apc)cr  =     ----------                         (13)
                          
                      d1.288 

 
         0.0017 
   (bpc)cr  =     ----------                         (14)
                      
                                     d1.095 

 
Equations for  apc and bpc in terms of size  for glass 
spheres are  : 
 
          0.0033 
    (apc)gs  =     ----------                       (15) 
                        
                                       d1.207 

 
           0.0002 
    (bpc)gs   =   ----------                       (16) 
                    
           d0.3697 

 
The suffix ‘pc’ denotes the values of different parameters 
in the parallel flow permeameter after applying 
corrections for porosity, wall and tortuosity effects. 
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5.2 Analysis Of The Data Obtained From Converging 

Flow Permeameter : 

Various steps followed in this study are in the following 
order: 

 (i) Bringing out the nature of converging flow 
(ii) Examining the applicability of Forchheimer 

equation to the data and to study variation of the 
coefficients ac and bc with size of medium. 

(iii) Estimation of porosity, wall and tortuosity 
corrections and incorporating the modifications 
necessary in the equations developed therein. 

 
Parameters acc and bcc for coarse granular media are 
related to size d by the equations  : 
 
        0.0054 
   (acc)cr  =    ----------   
                           (17) 
                       d0.943 

 
 
         0.0003 
   (bcc)cr  =     ----------    
                           (18) 
          d1.045 

 
Equations for  acc and bcc in terms of size  for glass 
spheres are  : 
 
           0.0010 
    (acc)gs  =      ----------   
                            (19) 
            d1.039 

 
            0.0003 
    (bcc)gs   =      ----------   
                                          (20) 
            d0.7426 

  

The suffix ‘cc’ denotes the values of different parameters 
in the converging flow permeameter after applying 
corrections for porosity, wall and tortuosity effects. 
 

6 Quantification Of Effect Of Convergence – 

Convergence factor :  
As, the present study is confined to only flow through 
converging boundaries, an attempt is made in this section 
to quantify the effect of convergence. 
 
The equations pertaining to parallel flow conditions are 
fairly different from those of converging flow 

configuration. As all the equations have been 
standardized for porosity, wall and tortuosity effect, the 
difference may be attributed to the effect of convergence 
in the range of experiments conducted (0.12 < Re< 
14725).  
Treating parallel flow conditions as reference, resistance 
offered to flow of a fluid through a porous medium 
confined in converging flow configuration may be 
expressed in terms of parallel flow conditions. That is, 
for coarse granular media, (acc) can be expressed in terms 
of (apc). Similarly, (bcc) can be expressed in terms of 
(bpc). In the case of glass spheres also, parameters 
pertaining to converging flow can be related to 
corresponding parameters of parallel flow conditions. A 
glance at the equations cited in Sec. 5.1and 5.2, leads to 
the fact that these parameters in turn are expressed in 
terms of size of the media. Hence, a comparison of these 
parameters for both the configurations in terms of size 
will make analysis lucid and practically useful on the 
field. From the plots it is obvious that convergence of 
flow has a definite bearing on reducing the resistance to 
flow. 
 
In order to quantify the effect of convergence on the 
resistance to flow, a dimensionless parameter called 
‘Integrated Convergence Factor’ (Cfi) is defined as 
follows : 
  Cfi  = Cfa  +  Cfb           (21)
       
where Cfi  = Integrated convergence factor 
 Cfa = Darcian convergence factor 
 Cfb = non-Darcian convergence factor 
 
Effect of convergence in the Darcian term of 
Forchheimer equation is expressed as  
                               apc – acc  
  Cfa = -------------                   (22) 
        apc  
 
    acc 
        = 1  –      -------         (23)
    apc  
 
   Cfa    = 1 – 0.625 d0.098        (24) 
     
On similar lines for non Darcy parameter 
 
     bpc – bcc  

 Cfb = ----------------        (25) 
          bpc  

  
   bcc 
      = 1  –      -------        (26) 

    bpc 
 
  Cfb     = 1 – 0.0645 d0.0211        (27) 
 
Therefore, Eq.(21) becomes 
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  Cfi = 1.095 d - 0.079             (28) 
   

An expression for integrated convergence factor 
(Cfi) for glass spheres is obtained as  

 
  Cfi  = 0.802 d - 0.25            (29) 
 
Therefore, using Eq.(28) and (29) the effect of 
convergence can be computed for a given size of coarse 
granular and spherical shaped media respectively. 
 
CONCLUSIONS 

 
From the results it is inferred that for a given rate of flow 
through a known size of aquifer having predetermined 
grain size, the resistance to flow is higher in the parallel 
flow compared to similar media conditions in converging 
flow configurations.  It can also be concluded that for a 
known size of the medium packed in converging flow 
configuration, either for coarse media or round particles 
and for a given rate of flow, corresponding head loss can 
be determined , as ‘acc

’ and ‘bcc
’ provide measures of 

energy loss. Forchhiemer’s coefficients, which are 
representatives of hydraulic gradient, for both the 
configurations are compared and it is concluded that 
effect of change in configurations is very clear and 
influences the magnitude of resistance to flow through a 
known size of the media. The effect of convergence is 
quantified in terms of a new factor ‘Convergence factor’ 
(Cf ). An attempt is made to express the convergence 
factor in terms of measurable parameters.  
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