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ABSTRACT 
Chemicals that are dissolved in groundwater flow along 

with the slow-moving water as it makes its way through 

the complex pores of the aquifer; during this process they 

are dispersed in different directions. The rate of 

dispersion depends on the porous structure and the fluid 

speed. Many groundwater aquifers have a natural layered 

structure; here this is used to advantage by discretizing 

them into "almost horizontal" layers, where each may 

have different matrix properties such as thickness, 

permeability, dispersivity, porosity, etc.  The mean 

dynamic pressure (or mean hydraulic head) may be 

assumed constant vertically at each horizontal point if it 

is not in the vicinity of a well or where there is very 

small vertical flow.  In the vicinity of recharge or 

pumping wells, the mean dynamic pressures or hydraulic 

heads for each sub-layer of the aquifer may be allowed to 

have different values for each different sub-layer.  

Steady-state fluid flow is considered here, in both 

confined and phreatic (unconfined) aquifers for 

illustration. 

 

INTRODUCTION 
Geological structures are generally composed of layered 

structures.  The thickness of such sedimentary layers is 

very small compared to their lateral extent.  Within each 

sub-layer the physical properties such as permeability, 

porosity and dispersivity can be assumed constant at 

each horizontal point.  Then, partial differential 

equations (PDE’s) for vertically-averaged fluid flow and 

contaminant transport may be written for each sub-layer 

of the aquifer.  Thus, a full 3-dimensional simulation is 

reduced to its 2-dimensional analogue and these PDE’s 

are for values at the vertical mid-points of each sub-

layer.  These models are therefore simplified models of 

the aquifer where the aquifer is discretized vertically, 

based on the natural layering of the geological structure. 

 

Aquifers can be divided into two main types for 

modelling purposes; confined and phreatic (unconfined) 

aquifers. Confined aquifers have impermeable 

boundaries at both the top and the bottom. Phreatic 

aquifers do not have an impermeable top boundary and 

hence the water table is free to move up when the aquifer 

is recharged naturally from surface water or artificially 

from a recharge well, and down when water is pumped 

out of the aquifer.  The flow of fluid and transport of 

contaminants in confined and rigid aquifers where the 

thicknesses of the sub-layers are uniformly constant have 

been explored in [1]; there, the vertical flow of the 

isothermal and incompressible fluid is assumed to be 

very small and there are no sources or sinks to cause 

significant interlayer vertical flow  

 

In the more general case when the thicknesses of the sub-

layers of the confined aquifers are varying, the fluid flow 

and the tracer or contaminant transport model has been 

formulated in [2].  Fluid flowing in a layer may enter 

into neighbouring layers at a rate that depends on the 

difference of permeabilities and thicknesses of the two 

layers; again, the vertical flow was assumed negligible. 

 

The model was extended to include fluid flow and tracer 

transport in phreatic aquifers in [3] and [4] by 

maintaining the assumption of no significant vertical 

flow. The difficulty of implementing numerical 

procedures when a sub-layer of the aquifer appears or 

disappears laterally (e.g. a lens) has been explored in [5].  

It was found that by allowing the sub-layer with partial 

appearance to continue across the lateral extent of the 

aquifer with a very small thickness does not affect the 

total results.  The removal of hazardous contaminants in 

groundwater by introducing strong oxidizers into the 

aquifer was discussed in [6]; there, a simple model based 

on the natural layering of the aquifer was used to model 

the flow of the introduced remediation agent in the 

groundwater while the pollution degradation takes place. 

 

In all these models, vertical flow was assumed to be very 

small.  In cases where there are recharge wells or 

pumping wells, vertical or interlayer flow is not purely 

based on the difference in permeabilities and thicknesses 

of the sub-layers.  The mean dynamic pressure may not 

then be assumed constant throughout the thickness of the 

aquifer. This paper includes illustrations from previous 

models and some illustrations from the newer work when 
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each sub-layer of the aquifer has a different mean 

dynamic pressure from those above and below. 

 

NOMENCLATURE 
𝐹 = fluid recharge rate or pumping rate 

𝐻̅ = mean hydraulic head 

ℎ = thickness 

𝐾 = permeability 

𝑃̅ = mean dynamic pressure 

𝑞 = total volume flux 

𝑢 = 𝑥-component of fluid speed 

𝑣 = 𝑦-component of fluid speed 

 

Greek Symbols 

𝛼 = dispersivity 

𝛿 = Dirac delta function 

𝜇 = fluid dynamic viscosity 

𝜌 = fluid density 

𝜑 = porosity 

𝜓 = stream function 

 

Subscripts 

𝐿 = longitudinal 

𝑃 = pollutant 

𝑅 = remediating agent 

𝑇 = transverse 

 

1 Fluid Flow 
Mean dynamic pressure can be assumed constant 

vertically at each horizontal point (𝑥, 𝑦) of the multi-

layered aquifer if there is no significant vertical flow, or 

modelling is being done for a zone that is far from any 

recharge wells, pumping wells, etc., that may cause 

vertical flows ([1], [2], [3], [4], [5] and [6]).  Wells that 

have perforations through the thickness of the whole 

aquifer do not cause significant vertical flow; therefore, 

this model is still useful for those cases. 

 

The governing PDE for the mean dynamic (gauge) 

pressure 𝑃̅ in a confined aquifer composed of 𝑁 

sedimentary sub-layers each with thickness ℎ𝑖(𝑥, 𝑦) and 

permeability 𝐾𝑖(𝑥, 𝑦), in the presence of a pumping well 

at (𝑥0, 𝑦0) with pumping rate 𝐹̅𝑃 [m3 s–1 m–1 = m2 s–1] of 

fluid per unit thickness of the aquifer and a recharge well 

at (𝑥1, 𝑦1) with recharge rate 𝐹̅𝑅 [m2 s–1] of fluid per unit 

thickness, both averaged over the thickness, is found to 

be 

 

𝜕

𝜕𝑥
(ℎ𝐾

𝜕𝑃̅

𝜕𝑥
) +

𝜕

𝜕𝑦
(ℎ𝐾

𝜕𝑃̅

𝜕𝑦
)

= 𝜇ℎ𝐹̅𝑃𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0)
− 𝜇ℎ𝐹̅𝑅𝛿(𝑥 − 𝑥1)𝛿(𝑦 − 𝑦1),                                             (1) 
 

where ℎ(𝑥, 𝑦) is the total thickness of the aquifer, i.e., 

ℎ = ∑ ℎ𝑖
𝑁
𝑖=1  and 𝐾(𝑥, 𝑦) is weighted average of the 

permeabilities of all sub-layers, 𝐾 = (∑ ℎ𝑖𝐾𝑖
𝑁
𝑖=1 ) ℎ⁄ .  

Once the pressure field is found from (1) by using 

suitable boundary conditions, the velocity field can be 

computed readily by using Darcy’s law: 

 

(𝑢̅𝑖 , 𝑣̅𝑖) = −
𝐾𝑖
𝜇
(
𝜕𝑃̅

𝜕𝑥
,
𝜕𝑃̅

𝜕𝑦
),                                                 (2) 

 

where 𝑢̅𝑖(𝑥, 𝑦) is the component of fluid velocity in the 

𝑥-direction and  𝑣̅𝑖(𝑥, 𝑦) in the 𝑦-direction. 

 

As a simple illustration, consider an aquifer consisting of 

only one (homogeneous) layer, as shown in Figure 1.  

The thickness profile for the aquifer is ℎ(𝑥, 𝑦) = 1 +
0.5 cos(𝜋𝑥 25⁄ ) cos(𝜋𝑦 20⁄ ).  There is a background 

steady flow due to a pressure gradient in the 𝑥-direction.  

Suppose that the aquifer is being recharged with a 

recharge well at (40,50) and water is being removed at 

(80,30) by a pumping well. The PDE in (1) is solved 

numerically with zero flux boundary conditions at (𝑥, 0) 
and (𝑥, 80) and with 𝑃̅(0, 𝑦) = 20 [Pa] and 𝑃̅(100, 𝑦) =
0 [Pa]. All other parameters are listed in Table 1. 

 

 
Figure 1: A rectangular homogeneous aquifer with a 

recharge well at (  ,   ) and a pumping well at 

(  ,   ). The thickness is shown; the base of the 

aquifer need not be planar.  The slope in thickness is 

not as big as it looks here because of the exaggerated 

vertical scale. 

 

The resultant isobars are plotted in Figure 2 in red.  The 

isobars are contoured at an equal spacing between the 

highest and the lowest values of the mean dynamic 

pressure.  For the values used for the boundary 

conditions and recharge and pumping rates, the highest 

value is at the recharge well and the lowest value at the 

pumping well. 

 
Table 1: Parameters used to solve fluid flow in the 

aquifer shown in Figure 1. 

parameter value unit 

dynamic viscosity 𝜇 0.001002 kg m–1 s–1 

permeability 𝐾 10−7 m2 

recharge rate 𝐹̅𝑅 86.4 m3 day–1 m–1 

pumping rate 𝐹̅𝑃 86.4 m3 day–1 m–1 
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The stream function 𝜓(𝑥, 𝑦) [m3 s–1] can be computed by 

integration in the 𝑦-direction of the 𝑥-component of the 

total volume flux, 𝑞𝑥(𝑥, 𝑦) = 𝑢̅(𝑥, 𝑦)ℎ(𝑥, 𝑦) [m2 s–1], as 

𝜓(𝑥, 𝑦) = ∫ 𝑞𝑥𝑑𝑦
𝑦

0
. The resultant stream function has 

discontinuities around the recharge and pumping wells 

on their downstream sides which are equal to the 

recharge and pumping rates, respectively. 

 

The streamlines can be made to look continuous by 

joining streamlines with a difference equal to the 

recharge rate across the line of discontinuity caused by a 

recharge well, or equal to the pumping rate if the 

discontinuity is caused by a pumping well. The resultant 

continuous streamlines are also plotted in Figure 2 in 

blue.  The amounts of fluid flowing between each pair of 

adjacent streamlines are equal and constant. The fluid 

that is being recharged at (40,50) pushes some of the 

background flowing fluid across to make its way.  Some 

of the streamlines terminate at (80,30); this indicates 

that fluid is being pumped out of the aquifer from that 

point.  Note that the stream function can also be 

computed by integrating the 𝑦-component of the total 

volume flux 𝑞𝑦(𝑥, 𝑦) = 𝑣̅(𝑥, 𝑦)ℎ(𝑥, 𝑦) in 𝑥-direction as 

𝜓(𝑥, 𝑦) = ∫ 𝑞𝑦𝑑𝑥
𝑥

0
. The stream function so computed 

will have discontinuities around recharge and pumping 

wells in the +𝑦-direction. 

 

 
Figure 2: Isobars (red) and streamlines (blue) 

computed for the rectangular aquifer shown in Figure 

1 with a recharge well at (  ,   ) and a pumping well 

at (  ,   ). 

 

The fluid speed along the streamlines that originate from 

the recharge well and end at the pumping well is more 

than in the rest of the aquifer because of the steeper mean 

dynamic pressure gradient. 

 

As another illustration, the next example is chosen for a 

layered phreatic aquifer consisting of four sedimentary 

sub-layers and an impermeable bottom, where fluid is 

being recharged (from a stream) in only one of the sub-

layers (the top layer) of the aquifer, as shown in Figure 3. 

It is convenient to model the mean hydraulic head 

instead of the mean dynamic pressure for fluid flow 

analysis in phreatic aquifers (e.g., [4]). It is clear that the 

hydraulic head cannot be assumed to be vertically 

constant at each horizontal point because interlayer 

vertical fluid flow occurs near the source because of the 

difference in pressures (or hydraulic heads). 

 

The solution for the mean hydraulic heads in all the sub-

layers is shown in red as a contour plot in the lower part 

of Figure 3.  The computed head for each sub-layer is 

shown in the middle of that sub-layer.  The fluid dynamic 

viscosity 𝜇 is the same as for the aquifer in Figure 1. The 

fluid density 𝜌 is 1000 [kg m–3]. The permeabilities in 

the sub-layers are 10−10 × (0.7,1.0,0.5,0.1) [m2] starting 

from the bottom.  The boundary conditions for the mean 

hydraulic heads 𝐻̅𝑖(𝑥) are 𝐻̅1(0), 𝐻̅2(0), 𝐻̅3(0), 𝐻̅4(0) =
2.9 [m] and 𝐻̅1(10), 𝐻̅2(10), 𝐻̅3(10), 𝐻̅4(10) = 2.4 [m], 

where the sub-layers are ordered from bottom to top.  

The water table in the stream is 2.7 as marked by a red 

solid line in Figure 3. The blue curve at the top is also the 

mean hydraulic head computed for the top sub-layer. 

This is the physical water table (also called the phreatic 

surface). The dotted blue line in the stream is the mean 

hydraulic head in the top sub-layer; it indicates that if a 

well was dug in the top sub-layer, water would achieve 

that level. The isobars are plotted at an equal spacing 

between the maximum mean hydraulic head (2.9 [m]) 

and the minimum mean hydraulic head (2.4 [m]). 

 

The upper graph in Figure 3 is the total volume flux 

𝑞𝑥(𝑥) [m
3 hr–1 m–1] of fluid per unit width of the aquifer.  

Some water flow from the aquifer into the stream can be 

observed for some part of the stream as 𝑞𝑥 drops for a 

while and then water enters into the aquifer where the 

mean hydraulic head of sub-layer 4 drops below the 

water table.  The net overall increase in the value of 𝑞𝑥 

means more water enters the aquifer than leaves. 

 

 
Figure 3: Isobars (lines of constant hydraulic head) 

computed in the layered phreatic aquifer with a trans-

versely-running stream at the top.  The water level in 

the stream is marked with a solid red horizontal line. 

 

2 Pollutant Transport 
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Dissolved pollutants disperse in all directions when they 

move through the complex pores within the aquifer.  The 

overall dispersion is the result of the two effects; 

molecular diffusion and mechanical dispersion.  When 

polluted water makes its way through the heterogeneous 

pores, some of it shoots past the easy pathways but some 

of it finds it hard to pass through.  Thus, the pollutant is 

dispersed mechanically on a longer distance along the 

direction of flow.  In a direction transverse to the main 

flow direction, pollutant usually disperses on a smaller 

scale.  The dispersion coefficient is suggested to be 

proportional to the fluid speed ([7]).  If the 𝑥-axis of the 

Cartesian coordinate system is aligned with the main 

flow direction, the coefficient of dispersion along the 

main direction of flow is 𝐷𝑥 = 𝛼𝐿 |𝒒| (𝜑ℎ)⁄  and the 

coefficient of dispersion along the transverse direction of 

flow is 𝐷𝑦 = 𝛼𝑇 |𝒒| (𝜑ℎ)⁄ , where 𝛼𝐿 is usually larger 

than 𝛼𝑇. The constants 𝛼𝐿 and 𝛼𝑇 are called dispersion 

lengths or dispersivities.  The pollutant also disperses in 

vertical directions from one sub-layer to the other. The 

model equations for multi-layered aquifers are shown by 

[2], [3], [4], [5] and [6]. 

 

 
Figure 4: The computed pollutant concentration 

contours at steady state when water that is being 

injected through the well at (  ,   ) is polluted.  The 

concentration of the pollutant at the pumping 

(monitoring) well becomes steady after a while as 

shown in the break-through curve (pop-out graph at 

the observation well). 

 

As an illustration, consider that the fluid with which 

aquifer in Figure 1 is being recharged at (40,50) is 

contaminated with a concentration 𝑐𝑅 = 1 [kg m-3].  The 

steady-state solution for the pollutant concentration in 

the aquifer is shown in Figure 4 as a contour plot.  The 

contours are plotted at an equally spaced logarithmic 

scale 10−3,−2.7,−2.4,…,0 from the outer contour to the inner 

one, respectively.  The recharge well is marked with a 

red circle and the pumping well is marked with a blue 

one.  The longitudinal dispersivity 𝛼𝐿 is taken as 1 [m] 

and the transverse dispersivity 𝛼𝑇 is 0.1 [m] for this 

simulation.  The porosity (the ratio of the void space in 

the porous medium to the total volume in a 

representative elementary volume) is 0.1 [–].  The 

breakthrough curve at the pumping well or monitoring 

well shows the concentration of the pollutant in the 

pumped-out water plotted against time.  After almost 4 

days, the concentration of the pollutant in pumped water 

reaches a steady level. 

 

Some of clean water is also pumped out at the 

monitoring well; that is why the pollutant concentration 

of the pumped water is less than that of the middle of the 

concentration profile hump. 

 

As an illustration for a layered phreatic aquifer, consider 

that the transverse running stream at the top of the 

aquifer shown in Figure 3 is polluted with concentration 

𝑐𝑅 = 1 [kg m–3].  It is assumed that the concentration of 

the pollutant in the stream water does not change 

significantly with the clean water that enters from the 

aquifer into the stream.  The pollutant from the stream 

mixes with the slow-moving clean water of the aquifer.  

After a long time, the solution of the pollutant 

concentration reaches steady state, and this is shown in 

Figure 5 as a contour plot.  The contours are plotted on 

an equally space logarithmic scale 10−2.5,−2.3,−2.1,…,−0.1 

from the outer contour to the inner ones.  The porosities 

of all the sub-layers are taken as 0.1 [–]. The longitudinal 

dispersivities used are (0.230,0.250,0.225,0.200) [m] 

and the transverse (vertical) constant dispersion 

coefficients are (0.046,0.050,0.045,0.040) [m2 hr-1] 

both in order from the bottom sub-layer to the top. 

 

 
Figure 5: Contours of the steady-state pollutant 

concentration in the layered aquifer of Figure 3 when 

the stream water is uniformly contaminated. 

 

3 Remediation 
An illustration of the remediation model [6] is presented 

in this section.  Consider again the aquifer shown in 

Figure 1 and assume a continuous injection of a strong 

oxidizer (a remediating agent) without significant fluid 

along with it at (50,50) just in front of the recharge well.  

The steady injection rate for the dry remediating agent is 

𝑞𝑅 = 20 [kg m–1 day–1].  The injected water at (40,50) is 

again contaminated with concentration 𝑐𝑅 = 1 [kg m–3].  

The steady-state solution for the pollutant concentration 

for this case is shown in Figure 6.  The contours are 
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plotted on a logarithmic scale 10−3,−2.7,−2.4,…,0 from the 

outer contour to the inner ones.  The second-order decay 

rates for the pollutant and the remediating agents are 

𝑘𝑃 = 5 and 𝑘𝑅 = 1 [kg m–3 day–1], respectively. The 

longitudinal and transverse dispersivities for both the 

pollutant and the remediating agent are the same as for 

the simulation in Figure 4.  The new breakthrough curve 

at the pumping well at (80,30) is plotted in solid red in 

the pop-out graph there. The dashed red curve is the 

breakthrough curve for a simulation without any added 

remediating agent. Another pop-out graph at (95,50) 
shows breakthrough curves for the pollutant at that point. 

The dashed red curve is the concentration of the pollutant 

at that point when there is no remediating agent being 

released, while the solid one is the breakthrough curve 

when the remediating agent is being released with rate 

𝑞𝑅. 

 

 
Figure 6: The concentration profile of the pollutant 

when the aquifer of Figure 1 is being recharged with 

contaminated water at (  ,   ) and a remediating 

agent is being released steadily at (  ,   ).  Water is 

being through a pumping well located at (  ,   ). 
The fluid recharge rate, the fluid pumping rate and the 

remediating injection rates are given in the text. 

 

It may be seen that there is a big difference between the 

removed steady concentration at (95,50) and that at the 

monitoring well at (80,30).  As discussed above, the 

fluid speed between the recharge and the pumping well is 

much greater than that in rest of the aquifer.  This does 

not allow the agent to co-exist with the pollutant for long 

enough to make significant changes. However, the fluid 

carrying the remediating agent moves relatively slowly 

from the injection point of the remediating agent to 
(95,50) and hence there is more opportunity for the 

remediating agent to oxidize the pollutant. 

 

Figure 7 shows the concentration profile of the 

remediating agent when it is being advected with the 

fluid, being dispersed in all directions and being used up 

to remove the pollutant.  One can observe that the 

pollutant from the recharge well disperses more than the 

remediating agent from its injection point.  This is 

because the fluid dispersing from the recharge well 

advects the pollutant along with it whereas the 

remediating agent does not have any fluid with it to alter 

the background fluid flow. Some of the remediating 

agent is also removed by the pumping well. So, in this 

case, the pumped out water contains concentrations of 

both the pollutant and the remediating agent. 

 

 
Figure 7: The concentration profile of the remediating 

agent. 

 

CONCLUSIONS 
In this paper, some simplified models have been 

presented for predicting pollutant concentration 

transported by groundwater flow within homogeneous or 

layered aquifers. The vertical discretization based on the 

natural layering of the geological structures simplifies 

the problem from a full-scale three-dimensional 

modelling of fluid flow and transport in each sub-layer to 

their two-dimensional averages.  By solving fluid flow 

and transport models in each of the sub-layers and by 

matching the transfers at the sub-layer interfaces, the 

three-dimensional naturally-discretized (simplified) 

models have developed.  The models can be used for any 

layered three-dimensional aquifer. The examples 

presented were chosen to be two-dimensional for better 

demonstration purposes. 

 

Even if the sub-layers are not well-defined, the aquifer 

can still be discretized vertically and be treated in the 

same way as the geologically-stratified cases considered 
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above.  The layering definition should be done in the best 

possible way so that the physical properties in each of 

the sub-layers do not vary much in the vertical direction 

at each horizontal point. 

 

The presented remediation models [6] are for the 

remediation strategy called In Situ Chemical Oxidation 

(ISCO) and the reaction between the pollutant and the 

remediating agent has been taken as of second order.  

The exact order depends on the nature of the chemicals 

involved in the reaction.  Similarly, the decay rates of the 

pollutant and the remediating agent used are only 

illustrative. 

 

The governing equations for the mean hydraulic heads in 

a layered phreatic aquifer have not been presented 

because of space constraints.  These equations and their 

background mathematics will be published at a later 

time. 
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