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ABSTRACT 
 
Operation controllability and fluid dynamics were evaluated in a system of 
interconnecting fluidised beds. Results indicate that the solid circulation is 
controllable and possible to determine from pressure measurements. Sufficient gas 
tightness of the loop-seals and flexibility in controlling of solid fluxes was indicated. 

INTRODUCTION 
 
Gasification is a promising method for converting crude biomass to renewable 
transport fuels, Devi et al (1). Nevertheless, the complications in handle the 
unwanted components in the raw gas, such as condensing hydrocarbons (often 
referred to as tars), are still a drawback and a major issue to solve, Li and Suzuki (2).  
 
In this work, a novel technique for catalytic gas cleaning of biomass derived raw gas 
based on the concept for chemical lopping combustion (CLC), Lyngfelt et al (3) is 
investigated from an operational point of view. The concept of the gas cleaning 
system is to circulate catalytically active particles between two reactors, while the 
gases in the two reactors are kept separated. By means of the particles oxygen is 
transferred and reactions are catalysed. In contrast to CLC the required amount of 
oxygen transferred by the bed material is small, as only a share of the gas, the tars, 
should be combusted. Therefore, this work is focused on the control of the 
circulation rate as it is crucial for the development of this gas cleaning process. A 
survey of fluid dynamics is conducted in a cold system of interconnecting fluidised 
beds (IFBS), identical in size as an existing hot gas cleaning system. 
The cold flow model used to determine the parameters relevant for circulation 
consists principally of a Circulating Fluidised Bed (CFB) and a Bubbling Fluidised 
Bed (BFB), Fig 1. The two beds are coupled by two fluidised loop-seals (LS); 
Superior Loop-Seal (SLS) and inferior Loop-Seal (ILS), which allows solid circulation, 
but prevents gas mixing between the two reactors. Inert gases are selected for the 
fluidization of the LS.  
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as only enough oxygen supply for partial oxidations and breaking down of 
the unwanted components in the raw gas is desired.  

ii. Leakage via LS: The influence in gas leakage from pressure difference 
between the CFB and BFB is evaluated. That this has a strong influence on 
the leakage has previously been shown by Eva Johansson et al (5). 

iii. System behaviour and supervision: Relations between solid fluxes and 
pressure drop in the riser are investigated. The reason is to establish a 
relation to determine the solid fluxes in the hot unit from its pressure signals. 
Previously, Johnson et al (6) showed a correlation between the two 
parameters for a CFB boiler.  
The behaviour of the fluidization in the system is characterised by the 
fluidisation regimes, which is determined from the sampled pressure signals. 
The different regimes in the riser reflect solid inventory and can be coupled 
to particle residence time, which is important for the oxidation of the catalyst.    

iv. Flexibility: The possibility to control the solid fluxes by changing the velocity 
in the ILS is investigated. Pröll et al (7) indicated that regulating the 
fluidization in the LLS is influencing the solid flux in the system.  

 

EXPERIMENTAL 
 
The cold IFBS setup is shown in Fig 2. The system is supplied with air or helium at a 
pressure of 1.2 bars. To minimize effects from static electricity between the particles 
and the perspex surfaces the gas is humidified in an air tight water bottle. The 
moisturized gas is distributed to the four fluidising stems where the pressure is 
adjusted to a pressure slightly higher than atmospheric conditions, followed by 
manually tuning of the volumetric flow rates by the use of rotameters. The gas 
enters the reactor system via wind boxes, which are placed beneath the porous 
plates, in order to reduce potential pressure fluctuations in the gas feed. Flow 
control valves are mounted on the outlets of the CFB and BFB for regulation of 
pressure in each reactor. A filter is mounted after each flow control valve for 
collection of elutriated particles.  

The system is equipped with 24 pressure taps and 24 pressure transducers. The 
pressure can be measured as differential pressure between two taps in the system 
or as differential pressure between one tap and atmospheric pressure. The pressure 
taps are inclined with an angel of 45° to prevent bed material from blocking the 
tubes. A manually controlled valve is mounted in the downcomer for solid circulation 
rate measurements.  

Scaling Parameters 
 
To transfer data between the cold and the hot reactor it is necessary to keep the 
following dimensionless numbers constant, Glicksman et al (4) 
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Table 1 summarizes the operating parameters and the dimensionless numbers for 
the CFB and BFB in the hot and cold system. 

Table 1 Operation parameters and dimensionless numbers for the hot and cold unit 
Parameter Units Hot CFB Hot BFB Cold CFB Cold BFB 

      
Media gas Air Raw gas Helium/Air Helium/Air 

Temperature T (K) 1173 1173 293 293 
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Pressure P (Pa) 1 x 105 1 x 105 1 x 105 1 x 105 
Gas viscosity μ (Pa s) 4.59 x 10-5 3.43 x 10-5 1.96 x 10-5 

/1.82 x 10-5 
1.96 x 10-5   
/1.82 x 10-5 

Gas density ρf (kg/m3) 0.297 0.276 0.146 / 1.188 0.146 / 1.188 
Bed geometry (m) L L L L 

Particle diameter dp (μm) 150 150 150 150 
Solids density ρs (kg/m3) 5240 5240 2600 2600 

Superficial velocity uo (m/s) 1.00 0.039 1.00 0.039 
Sphericity   0.9 0.9 0.84 0.84 

Particle size distribution p P p p p 
Solid flux Gs (kg/m2s) Gs Gs 0.5 x Gs 0.5 x Gs 

Dimensionless number ρs/ ρf (x104) 1.76 1.89 1.58 / 0.218 1.58 / 0.218 
Dimensionless number u0/umf 40.82 1.12 40.32/37.45 1.57 / 1.46 

      
 
 
Solid Circulation   
    
Before each experiment, the system was refilled with new bed material and 
operated for 30 min in standard conditions with air, Table 2 to stabilize the 
conditions. Five sets of experiments for solid circulation were performed by varying 
the fluidisation velocity in the riser, from the highest velocity to the velocity were the 
bed started to have a slugging behaviour, Table 2 (Experimental run 1 – 5). The 
fluidisation velocity in the BFB, ILS and SLS was kept constant during each 
experiment.  

The velocity in the riser was decreased with approximately 6 cm/s between each 
measurement for air and approximately 17cm/s for helium. The number of 
performed measurements at each fluidisation velocity of the riser is presented in 
Table 2. The solid circulation was measured by closing the valve in the downcomer 
with simultaneous start of timekeeping. Intermediate times were registered when the 
sand column reached 1, 2 and 3 cm of height in the downcomer.  The registered 
heights (hi’) were recalculated to mass fluxes in downcomer (Gs,Downcomer) from the 
density of the bed material (ρsolid) according to  

 smkg
n

h
G solid

n

i

i
Downcomers

2

1

'

, 
  

(1) 

Leakage    
 
One leakage test was performed to investigate the potential slip of gases between 
the CFB and BFB. A gas chromatograph was coupled to the exhaust of the BFB and 
five measurements were performed at each fluidisation condition to determine the 
oxygen content. With the use of nitrogen in BFB, SLS, ILS and air in the CFB, the 
measured oxygen concentration in the BFB was coupled to the leakage of air from 
the CFB.  

Before the experiment, the entire system was operated with nitrogen for 30 min with 
fluidisation velocities according to Table 2. The fluidisation velocity in the riser was 
varied from the highest velocity to the velocity were the bed started to have a 
slugging behaviour, Table 2.  
 
Table 2 Experimental operation velocities for gases 
Fluidisation 
media 

Experimental 
run 

CFB         
U0 (cm/s) 

BFB         
U0 (cm/s) 

SLS         
U0 (cm/s) 

ILS          
U0 (cm/s) 

 Number of 
measurements1 

Standard, Air ----- 100.22 3.92 3.60 3.09 ----- 
Air 1 120 → 61 3.92 3.60 2.57 2 
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Air 2 120 → 61 3.92 3.60 3.09 3 
Air 3 120 → 61 3.92 3.60 3.26 3 
Helium 4 201 → 116 5.65 5.73 5.55 3 
Helium 5 201 → 132 5.65 5.73 6.48 5 

 
       
Standard 
Nitrogen 

----- 100.27 4.00 
 

3.68 
 

3.32 
 

----- 

       
Nitrogen (N) + 
Air (A) 

6 107 → 74 
(A) 

4.00 
(N) 

3.68 
(N) 

3.32 
(N) 

5 

1Number of measurements at each fluidisation velocity in the riser 

 

 

RESULTS AND DISCUSSION 
  
Scaling parameters  
 
The dimensionless numbers for solid/gas density ratio between operation conditions 
for the hot and the cold unit operated with helium is well adjusted, with deviation of 
11 % in the CFB and 20 % in the BFB. Whereas the dimensionless number for 
solid/gas density ratio in the comparison between the hot unit and the cold unit 
fluidised with air differs with a factor of 8 in the CFB and a factor 9 in the BFB. The 
ratio for superficial velocity and minimum fluidisation velocity deviates with 1 % for 
the CFB and 40 % for the BFB between the hot unit and the cold unit fluidised with 
helium. Whereas the ratio for superficial velocity and minimum fluidisation velocity 
deviates with 9 % for the CFB and 30 % for the BFB between the hot unit and the 
cold unit fluidised with air. The deviation in the ratio between superficial velocity and 
minimum fluidisation velocity for the BFB is of less importance in the gas cleaning 
IFBS compared to the same ratio for the CFB. The reason to this is that the solid 
flux, controlled by the fluidisation properties in the riser, is more vital for the 
operation.  

Sufficient agreement in the dimensionless numbers for the scaling relationship 
between the hot unit and cold unit fluidised with helium indicates that fluid dynamic 
properties are transferable between the two systems. In the case air is used for the 
fluidization, the deviation in solid/gas density ratio between the hot unit and the cold 
unit implicates that results from transferring fluid dynamics between the systems are 
more approximate. 

Solid Circulation 
 
Figure 3 shows that, independent of gas, efficient control of solid circulation between 
the two reactors can be achieved by varying the fluidisation velocity in the riser. The 
scattering effect at high velocities in the riser is coupled to the visual reading of the 
sand column height in the downcomer during measurements of the solid flux; the 
height of the column is increasing too fast to get a precise measure with the applied 
method. 

In the air experiments two distinct plateaus are formed in the experiments with low 
fluidisation velocity in the ILS. This indicates that the friction in the ILS exceeds the 
hydrostatic pressure of the sand column surplus in the BFB reactor and hinders a 
smooth particle transport. The lower solid circulation can be explained by wall 
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