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ABSTRACT 
 
A new methodology of assessing large amounts of fluidized bed pressure fluctuation 
data with various signal analysis methods in combination with signal pre-treatment 
methods is presented. This approach can be used to find certain combinations that 
are selectively sensitive to certain physical effects in fluidized beds, such as 
agglomeration. 
 
INTRODUCTION 
 
Fluidized beds are utilized for a variety of applications in the process industry, such 
as fluidized catalytic cracking (FCC), drying, solid fuel utilization and gas-phase 
polymer production. The combustion and gasification of solid fuel, mostly coal, is an 
example that has been used in fluidized bed applications for a relatively long time. In 
light of the increasing world energy demand, coupled with a developing greenhouse 
effect as well as increasing fossil fuel prices, other fuel sources are currently 
considered and used. Biomass, although having a lower energy density than fossil 
fuels, is available in many parts of the world. It is neutral in terms of CO2-emissions 
and therefore does not further contribute to the greenhouse effect. Also other fuel 
sources like sewage sludge or many kinds of solid wastes are an interesting option. 
Fluidized beds are specifically considered for alternative feedstocks because they 
are very suitable for a variety of fuels and changing fuel properties (e.g. (1)). 
The utilization of alternative fuel such as biomass has, however, also introduced new 
operational problems. The main concern is agglomeration of bed particles resulting 
in partial or total defluidization, and a time consuming and expensive temporary 
shutdown of the plant. In the case of biomass conversion the agglomeration 
phenomenon stems from the formation of a sticky layer around the bed particles (2), 
which consecutively form larger entities (agglomerates). The stickiness of this layer 
originates from the formation of eutectic mixtures (mixtures of two or more 
components which melting temperatures lie below the pure component melting 
temperatures), in this case the silica from the sand and alkali components from the 
biomass (2,3). The timely recognition of this phenomenon is crucial for taking 
appropriate measures to avoid a potential shutdown. 
Such a recognition should be carried out online and be as simple and reliable as 
possible. Moreover, it should result in as little as possible false alarms. Although the 1
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need for suitable monitoring techniques is motivated by the application of conversion 
of biomass here, it is not limited to this process. Agglomeration problems are also 
encountered in several other fluidized bed processes, for example gas-phase 
polymerization and drying. 
Our group has successfully applied the “attractor comparison” method in detection of 
particle size change and agglomeration in fluidized beds of different scales (4,5,6). 
Despite that we think that the pressure fluctuations contain more information from 
which one can distinguish different sources of hydrodynamic changes with the help 
of additional signal pre-treatment and analysis methods. 
 
APPROACH & METHODS 
 
This work is investigating the application of different signal analysis methods on 
pressure fluctuation data of bubbling fluidized beds with the goal of unambiguously 
detecting agglomeration. More specifically, the goal of this approach is to identify 
selective methods which are sensitive for certain distinct operational changes but not 
towards others. In the ideal case, such a selective method would only be sensitive 
towards the onset of agglomeration and not towards other changes in the process. 
However, a method that is only sensitive towards specific other irrelevant process 
changes, could potentially also be useful to serve as a countercheck in order to 
prevent false alarms. 
In order to assess the effect of certain distinct changes on the outcome of different 
analysis methods, several data sets with controlled step changes hereof have been 
used. In this work we restrict ourselves to measurements in an 80 cm bubbling 
fluidized bed. In this setup we carried out step-changes in the superficial gas velocity 
and we simulated agglomeration by replacing fractions of the initial bed of fine sand 
(d10=356µm, d50=532µm, d90=760µm) with coarse sand (d10=1070µm, d50=1280µm, 
d90=1510µm). This resulted in mixtures of increasing average particle size with a 
bimodal distribution. Table 1 gives an overview of the imposed changes. 
 
Table 1: Measurements in an 80 cm bubbling fluidized bed (total bed height ~90 cm) 
Imposed change* Steps Measurement position height 

Superficial gas velocity 0.21 / 0.23 / 0.24 / 0.25 / 
0.31 / 0.33 / 0.34  [m/s] 23 cm 

Replacing fractions of fine 
sand with coarse sand 

0 / 6 / 24 / 36  [%] 
(coarse sand fraction 
in total bed mass) 

24 cm 

* For changes in superficial gas velocity the fine sand was used, for replacing fractions of the bed with coarse sand a 
velocity of 0.40 m/s was utilized. 
 
Pressure fluctuations have been measured at the inner wall of the bed, 
consecutively being low-pass filtered at 60 Hz and sampled at 200 Hz. 
 
In total, 37 different signal analysis methods have been investigated in this 
approach; three out of those are presented as illustrative examples in this paper. 
The standard deviation (second moment of the distribution of the measured 
pressure fluctuations) is utilized as an analysis method. The standard deviation of a 
sample is a measure of the mean distance of values in a data set from their mean 
(Equation 1). 
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The attractor comparison method consists of an attractor reconstruction followed 
by attractor comparison. During attractor reconstruction high-frequent (typically a few 
hundred Hz) pressure fluctuation data of a certain time window are projected into a 
multidimensional state-space. This yields an attractor, a characteristic fingerprint of 
the system (4,7). The actual attractor comparison is based on comparing a reference 
attractor, taken from a well-fluidized state, with the current state of the fluidized bed 
online. This comparison is based on a statistical test developed by Diks et al. (8), 
which evaluates the dimensionless distance S between both attractors. An S-value 
larger than 3 refers to a 95% confidence interval of the two attractors being 
generated by a different mechanism. In a fluidized bed reactor, this indicates a 
change in the hydrodynamic behaviour, as induced by agglomeration. For details of 
the attractor comparison method the reader is referred to van Ommen et al. (4). 
The Kolmogorov-Smirnov (KS) test (e.g. (9)) for similarity of underlying probability 
distributions is based on the maximum distance (one-sided or two-sided) between 
two cumulative distribution functions (CDF). The two-sided distance is incorporated 
in the presented approach. In the calculation of the two-sided KS distance, the 
empirical cumulative distribution function (CDF) of a sample of pressure fluctuation 
data, Fn(x), is compared with the CDF of a reference sample, F1(x), at the beginning 
of the data set. The two-sided distance between the two functions is then defined as: 
 
 ( ) ( )1max= −CDF nD F y F y (2)
 
These signal analysis methods are not only applied to raw (i.e., untreated) signals, 
but also to signals that are pre-treated with frequency filtering with different cut-off 
frequencies, principal component analysis or wavelet decomposition on different 
detail- & approximation levels using a Daubechies-5 wavelet (e.g. (10)). The choice 
to apply certain pre-treatment methods is motivated by the fact that different physical 
phenomena (individual particle collisions, bubble phenomena & flow/circulation 
patterns) manifest themselves at different frequencies in the pressure fluctuation 
measurements. Assuming that the effect of different changes on the hydrodynamics 
of the bed will not be evenly distributed throughout the whole frequency range, 
separating those effects can therefore help to better identify those changes. 
 
Pressure fluctuation data of fluidized beds of different scales and at different 
measuring positions have been utilized in this approach and are currently under 
investigation. In this paper, however, we restrict ourselves at the data sets as 
presented in Table 1. With a large number of signal analysis methods, signal pre-
treatment techniques, fluidized beds and measuring positions one arrives at a large 
amount of possible combinations for the resulting analysis. To handle these large 
amounts of results we have used a characteristic number to quantify the sensitivity 
of a method towards the imposed change. This quantification first takes the mean 
value of the analysis variable along all of the steps of the imposed change and 
requires a continuously increasing or decreasing value thereof. Besides the 
continuous trend in the mean value, it is also important to relate the variation of the 
analysis variable in each step to its average in order to assess whether the different 
steps can actually be distinguished from each other. This “quality of trend” has been 
quantified by: 
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In essence this measure for quality of trend assesses the extent to which the 
analysis parameter results (zi) in a homogenous in- or decrease, at the same time 
taking into account the standard deviation (σi) of the variable. This measure will yield 
a value between zero and one, where one refers to a perfect trend and zero to no 
trend. If the average value of the analysis variable exhibits local maxima or minima, 
a value of zero is assigned. The quality of trend, in this case with respect to changes 
in particle size, is visualized in a matrix (Figure 1). 

HP LP BP  D1                                     D10 A10

Frequency filtered data Wavelet decomposed data PC decomp. data
Raw data

M1

M2

M3

 
Figure 1: Matrix with the “quality of trend” for all signal analysis methods 
on the vertical axis (M1=Attractor Comparison, M2=Standard Deviation, 
M3=Kolmogorov-Smirnov test) & pre-treatment techniques on the 
horizontal axis (HP=High-pass, LP=Low-pass, BP=Band-pass, 
Di/Ai=Detail/Approximation level, PC=principal decompositions 
(various)). The combinations marked by circles are used for illustrating 
different results in the remainder of the paper. 

 
From this matrix one can quickly see that certain groups of analysis methods and 
signal pre-treatment methods are visually emerging in form of horizontal light bands. 
It also becomes clear which combinations are not yielding clear trends and can be 
disregarded. 
 
RESULTS & DISCUSSION 
 
In order to illustrate the potential of this approach, the trends for five examples in 
Figure 1 are chosen to be illustrated in Figures 2-6. Base case for the particle size is 
only fine sand (0% fraction of coarse sand) and for the superficial gas velocity a 
velocity of 0.21m/s (0% relative gas velocity increase); the presented consecutive 
step-changes in each case refer to increasing bed mass fractions of coarse sand as 
well as the relative gas velocity increase with respect to the base case. 

1 2

34

5
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Figure 2: Attractor comparison based on raw data 

for changes in particle size (left) and superficial gas velocity (right) 
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Figure 3: Attractor comparison based on frequency filtered data (high-pass, cut-

off=15Hz) for changes in particle size (left) and superficial gas velocity (right) 
 
Figure 2 (left) is a “reference case” in relation to earlier published work on 
agglomeration detection (e.g. 4,5,6), confirming that attractor comparison is sensitive 
towards particle size changes. Pre-treatment of the raw data with a high-pass filter 
(cut-off frequency 15 Hz) increases the sensitivity towards the particle size changes 
significantly, as observed in higher S-values in Figure 3 (left). 
Towards superficial gas velocity changes attractor comparison is in principle also 
sensitive, however, not with certain limits (~10%), as observed in Figure 2 (right). 
Pre-treatment of the raw data with a high-pass filter (cut-off frequency 15Hz) further 
increases the sensitivity towards gas velocity as seen in Figure 3 (right); however, 
the method also gets less robust as the S-value frequently increases the value of 3 
even for an unchanged gas velocity (0%). It has to be remarked that the method 
uses the same parameterization as for the un-treated data. When it will be optimized 
for the application with pre-treated data, better results are expected. 
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Figure 4: Kolmogorov-Smirnov test based on wavelet decomposition (detail level 7) 

for changes in particle size (left) and superficial gas velocity (right) 
 
Looking for a good “quality of fit” within the matrix above (Figure 1), one can see that 
the KS-test in combination with a wavelet decomposition pre-treated signal on detail 
level 7 is sensitive towards changes in particle size, as seen in Figure 4 (left). The 
method is not sensitive towards even large changes in superficial gas velocity, as 
seen in Figure 4 (right), which makes it robust in terms of varying gas velocities in 
industrial practice. 
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Figure 5: Kolmogorov-Smirnov test based on wavelet decomposition (detail level 4) 

for changes in particle size (left) and superficial gas velocity (right) 
 
Choosing the detail level 4 in the wavelet decomposition in combination with the KS-
test, a very different picture as compared to detail level 7 arises. In Figure 5 one can 
observe that the method in this case is not sensitive towards particle size changes 
(left) but indeed sensitive towards superficial gas velocity changes (right). This 
method can consecutively serve as a “countercheck” for a changing superficial gas 
velocity. 
It should be remarked that the previous two examples (wavelet detail level 7 & 4) are 
not just “accidentally” good trends, but one can indeed observe a gradual overall 
trend in the sensitivity of the KS test as a function of the applied detail level (10 in 
total) in the wavelet decomposition. 
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Figure 6: Standard deviation based on raw data for changes in particle size (left) and 

superficial gas velocity (right) 
 
An example of how one can be mislead by simply looking at a single matrix, as 
presented in Figure 1, is shown in Figure 6: A good trend is observed for changes in 
particle size, but an even larger, not continuous in one direction, trend in superficial 
gas velocity changes. This effect is not desired since one obviously cannot 
determine whether changes in particle size or superficial gas velocity are responsible 
for the resulting trend in this case. 
 
 
CONCLUSIONS & OUTLOOK 
 
Aiming at distinguishing different sources for hydrodynamic changes in fluidized 
beds, we have presented a new methodology of screening large amounts of various 
signal analysis methods (37 in total) in combination with signal pre-treatment 
methods (33 in total). This methodology has been applied to pressure fluctuation 
measurements of a bubbling fluidized bed with distinct changes in only one of the 
operating parameters at a time: fluidization velocity and particle size. Assessing the 
“quality of trend” of an analysis variable as a function of an imposed step-change 
has been realized by a generic measure. With help of this measure one can see 
potentially useful combinations emerging from a matrix of all possible combinations; 
a few examples herein were highlighted. The examples given indicate the potential 
of this new methodology for developing a suitable early detection system for 
hydrodynamic changes, selective for the origin of this change. 
 
We are currently investigating a large number of pressure fluctuation sets from 
different reactor scales and measurement positions in order to investigate how 
robust a method is in terms of those parameters. Circulating fluidized beds (CFB) are 
also part of this research, as attractor comparison has been shown to be sensitive 
towards particle size in lab-scale CFBs (11). Moreover, the measure for the quality of 
trend is subject to further optimization in terms of robustness. 
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NOTATION 
 

xxd  Cumulative volume fraction smaller than xx µm 
CDFD  Distance (two-sided) between cumulative distribution functions 

f  Quality of fit (as defined in equation 4) 
iF  Cumulative distribution function (i=1 reference sample) 

N  Number of samples 
iy  Pressure fluctuation data points 

y  Mean of y 
iz  Individual results of the analysis method 
σ  Standard deviation 
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