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ABSTRACT 
 
Sloshing in tanks carrying LNG, LPG and petroleum is an important phenomenon as 
dynamic pressure arises from sloshing can destroy the containing tanks. So it is vital 
to consider this phenomenon in design stages of carriers. The governing equations 
in fluid flow are conservation of mass and momentum. Modeling of free surface flow 
in tank needs a suitable tool. One of the most powerful tools to model the free 
surface is volume of fluid (VOF) method. Employing additional transport equation 
together with conservation of mass and momentum enable us to follow the free 
surface changes. A computer code was developed to evaluate sloshing problem. 
This code could calculate dynamic pressures exerted on walls of the containers. The 
model was validated using experimental data. 
 
INTRODUCTION 
 
From a structural point of view sloshing is critical in a partially filled tank. Dynamic 
pressure on the tank sides and bottom is increased due to sloshing. For accurate 
evaluation of this problem, we need a technique to compute the free surface profile. 
Between available techniques for computation of two phase flow such as MAC, VOF 
and LSM, VOF method was selected. In this paper a computer program based on 
VOF method was developed to calculate dynamic loads arise from sloshing in 
partially filled tanks. The results of the model were compared with experimental data. 
 
GOVERNING EQUATIONS 
 
Conservation Equations 
 
The modeling of fluid flow can be described by mass and momentum conservation 
principles. It is assumed that fluid is incompressible and Newtonian. These are 
sufficient for the type of engineering applications considered here. Incompressibility 
implies that the density of the fluid is not dependent on the pressure, and for this 1
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type of fluid, the mass and momentum conservation can, in integral form, be written 
as: 

0u nd
Γ

⋅ Γ =∫  (1)  

( ) 1u d u u n d pn d u n d
t ReΩ Γ Γ Γ

∂
Ω = − ⊗ ⋅ Γ − Γ + ∇ ⋅ Γ

∂ ∫ ∫ ∫ ∫  (2)  

where n  is the outward pointing normal vector at the boundary Γ  of a volume 
element Ω , t  is time, Re  is the Reynolds number, u  is the Cartesian velocity 
vector, and ⊗  is the outer vector product operator. Eqs. (1) and (2) are given for an 
Eulerian grid (e.g. fixed in time) but can be extended to arbitrary Eulerian-Lagrangian 
by inclusion of grid velocity in the convective term, which is the first on the right hand 
side of Eq. (2). 
 
Spatial Discretisation 
 
To solve the governing equations a domain is introduced in which the equations are 
solved. This domain can be divided into a number of blocks forming a multiblock 
domain but, for simplicity, the discretisation procedure will here be derived for a 
single block. The discretisation scheme and the solution routine follow Zang et al. 
(4). When the classic finite volume method is applied, the domain is discretised by 
subdivision into smaller non-overlapping control volumes, cΩ , also denoted cells. 
Cartesian based structured grids are used in the present method, containing 
quadrilateral cells. A cell-centered variable arrangement is used for the discretisation 
scheme, and the governing equations are solved by use of the primitive variables of 
pressure and velocity. For a cell cΩ  with the cell boundary cΓ  the surface integrals 
can be discretised as a sum over the cell faces, fΓ , and in discrete form the 
governing equations (Eq. (1) and Eq. (2)) can be rewritten as: 

0
ff
u n d

Γ
⋅ Γ =∑ ∫

 
(3)  

( ) 1
c f f ff f f
u d u u n d pn d u n d

t ReΩ Γ Γ Γ

∂
Ω = − ⊗ ⋅ Γ − Γ + ∇ ⋅ Γ

∂ ∑ ∑ ∑∫ ∫ ∫ ∫  (4)  

where f cf
Γ = Γ∑  and cc

Ω = Ω∑ . Fig.1 illustrates the curvilinear discretised 

domain for a two-dimensional case. 
 
FREE SURFACE MODELING 
 
The basis of the volume-of-fluid method is that to each cell an additional scalar is 
assigned which is the VOF (or volume fraction) value giving the degree of filling for 
the cell, Hirt, C. W. and Nichols, B.D., (2). A cell with a volume fraction value of 0 is 
void, and a volume fraction value of 1 equals a full cell. If the value is between 0 and 
1 the cell contains a free surface, i.e.: 

    
  

Volume of fluid in cell
Total cell volume

α =  (5)  

where α  is the volume fraction and 1 α−  is the volume fraction of the void or the air 
in the cell. Initially, all cells are given a volume fraction value, and at each time step 
a transport equation is solved to find the distribution of fluid at the new time step: 2
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0u
t
α α∂
+∇⋅ =

∂
 (6)  

where t  is time and u  is the velocity vector. 
 
The present study is based on a one-fluid approach, but the equations and 
derivations can easily be extended to a two-fluid approach. For a further description 
see Ubbink (3). Moving grids can be applied in combination with the VOF method but 
are not used in this study. 
 
CASE STUDY 
 
Sloshing problem experimentally conducted by Hinatsu et al (1). To validate the 
developed computer code, a tank with the same dimension of Hinatsu et al (1) 
experimental work was simulated. Fig.2 shows a schematic of setup in which the 
location of pressure gauges are indicated. 
 
The computer code is not able to consider moving meshes. This requires that the 
coordinate system for which the computational domain inside the tank is defined has 
a moving frame of reference. This can be performed by adding a momentum source 
term to all computational cells. The magnitude of this source should be equal to 
acceleration of the frame of reference. The horizontal position of the tank is given by: 

( )sinx A tω=  (7)  
where x  is the horizontal position and ω  is the angular frequency of the oscillation. 
 
The acceleration of the coordinate system, and hence the magnitude of the source 
can be found as: 

( )
2

2
2 sinx A t
t

ω ω∂
= −

∂
 (8)  

For all boundaries the wall boundary condition has been used with a viscosity equals 
to 

2610  ms
− . For all computations the maximum CFL number was selected as 0.2. 

 
To investigate the grid sensitivity of the sloshing problem, three different network 
dimension meshes as: 96×48, 128×64 and 192×96 was used leading to cells with 
side length 12.5, 9.375 and 6.25 mm  respectively. Fig.3 shows the pressure at 
gauges P1, P2 and P3 for different resolutions. The values of period and amplitude 
of the tank sloshing acceleration can be seen in Table 1, Case 1. 
 
VISUALIZATION OF THE FLUID MOTION 
 
The experimental test with tank sloshing (Hinatsu et al. (1)) was performed in a 
rectangular tank with dimensions of 1200×600×200 mm . The tank was equipped 
with acrylic end plates in order to visualize the moving flow inside the tank. During 
the experimental tests the fluid motion inside the tank was captured using VCR. The 
tank was accelerated due to a horizontal sinusoidal motion. Pressure measurements 
were performed in the tank. Fig.2 shows the setup of the pressure gauges on the 
tank walls. 
 
Fig.4 presents single images of this visualization captured by video. This figure 3
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compares Case 1 at four different time steps for a 0.2 s time step between images. 
The first step (a) clearly shows a traveling wave inside the tank. The following 
pictures show the wave impact at the right side wall of the tank. A large amount of 
fluid separation at the free surface resulting from the wall impact is observed. The 
last images also show the formation of a new wave, which travels in the opposite 
direction. By comparison of experiments and computations the dynamics of the flow 
exhibits great resemblance. It can be seen that the traveling wave and the impact 
with the end wall are very similar to the experimental ones. However a large value of 
fluid separation observed in the experiments which is not captured in the 
computations. This could be arises due to following reasons: In one hand the 
developed code cannot resolve a fluid volume of smaller than a few grid cells. To 
capture very small amounts of fluid separation, a higher grid resolution is required. 
However, as this separation is not considered to be important for the overall flow 
dynamics, the effect of this phenomenon can be neglected. In the other hand, a part 
of separation is included as a result of three dimensional effects which cannot be 
captured with the two-dimensional numerical model. 
 
Fig.5 presents a comparison of calculated pressure at gauges P1, P2 and P3 with 
measured pressure time series. For calculated pressure at Fig.5a to 8c the first two 
periods have been removed, as the fluid is not significantly excited yet. Furthermore 
the measurements were performed when the fluid was fully excited. 
 
Fig.6 compares the values of gauges P1, P2 and P3 for Case 2. According to 
Hinatsu et al. (1) this case is a no resonance case unlike the Case 1. This means 
that its fluid motion is less than that of Case 1. However Fig.6 shows that the 
magnitude of the measured pressure is very similar to that of Case 1. The 
comparison between measured and computed pressure is also similar to case 1, 
with the significant drop in pressure after each impact for both gauges P1 and P2. 
The last period in numerical results demonstrates better agreement with the 
experimental results than in Case 1 and the phase lag is not as evident. 
 
DISCUSSION AND CONCLUSION 
 
In general the numerical model performs very good predictions for the sloshing flow. 
The dynamics of the flow is well predicted as the visualizations show good 
agreement with numerical model for some distinct flow features, such as the 
traveling wave inside the tank and the impact at the end wall of the tank. The 
pressure levels inside the tank were also well predicted by the numerical model, 
since both the magnitude and the pressure time series for the impacts show good 
agreement. The 2-D modeling might over predict some flow features which do not 
occur in the experiments. The disagreement in the prediction of the accurate phase, 
where the computations showed a phase lag compared to the experiments, is more 
consistent. This starts after the first few periods, and grows throughout the 
simulation. The phase lag is due to loss of mass inside the domain. The magnitude 
of mass being removed is normally insignificant. However for applications such as 
the present sloshing case where a large amount of fluid separation from the free 
surface is involved, the amount of removed mass increases. This is significant to 
influence the flow properties, although the small region of separated fluid does not 
significantly influence the water flow in the domain. A new scheme has been 
implemented in the code in order to avoid removing too large quantities of mass from 
the domain, but this was not completed at the time of the present simulations and 4
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will be a topic for further study. 
 
NOTATION 
 
CFL Courant-Friederich-Lewy 
n  Outward pointing normal vector 
p  Pressure 
Re  Reynolds number 
t  Time 
u  Velocity vector 
x  Cartesian coordinate 
α  Cell filling degree 
Γ  Cell boundary 
ω  Angular frequency 
∇⋅  Divergence operator 
Ω  Cell volume 
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 Water level Period Amplitude
Case 1 20 % 1.74 s 60 mm 
Case 2 20 %  1.94 s 60 mm  
Case 3 60 %  1.40 s 15 mm  
Case 4 60 %  1.47 s 15 mm  

 
Table 1: Outline of sloshing cases. 

5
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Figure 1: Cell layout for 2D structured grid. Cell cΩ  shown in bold. 

 

 
Figure 2: Sloshing tank setup (units [mm]). P indicates pressure gauge. 

 

 
(a) (b) 

 
(c) 

Figure 3: Computations of sloshing problem using three different grids (96×48, 
128×64 and 192×96). The figures show the pressure computed inside the tank at P1 

(a), P2 (b) and P3 (c). 
 

6
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(a)  (b) 

 

 

 
(a’)  (b’) 

   

 

 

 
(c)  (d) 

 

 

 
(c’)  (d’) 

Figure 4: Visualization of the free surface contours in Case 1, for experiments and 
computations. Experiments are green and computations are blue. 
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(a) (b) 

 

 
(c) 

 
Figure 5: Comparison of numerical and experimental pressures, measured at 

gauges P1 (a), P2 (b) and P3 (c), for sloshing Case 1. The grid resolution equals 
128×64 grid cells. 

 

  
(a) (b) 

 

 
(c) 

 
Figure 6: Comparison of numerical and experimental (Hinatsu et al., 2001) 

pressures, measured at gauges P1 (a), P2 (b) and P3 (c), for sloshing Case 2. 
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