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1. Structure Heterogeneity

Local Axial / Radial

Challenge

2. State Multiplicity 3. Scale-up Effect

Jump Change (choking) Co-existence

With slight change of

: & At a critical condition
operation condition

Under the same operating conditions
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4. Critical influence of structural
changes on transport and reaction
Heterogeneity

(OF ~C4=0.032 Cy,
influence influence

Orientation C,=15.4C,,

4| pcs
: :‘ ve * o * Nt

Volume of unit
Number of particles
Gas flow rate

Structural influences on transport properties
—— Drag coefficients in different phases

- Dense-phase: -
Cp.~10°

P31

ol

Interface:

>
C,<10 > Interdependent

e °

Dilute-phase:
Cp=~>100
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Structural influences on transport properties
—— Meso-scale clusters

Local &

Local Radial

C,=186 Cp=543 — -,

Challenge: spatial-temporal Multi-
Scale Structure

How to formulate?
What is the mechanism?
What happens at meso-scale?

Key/Focus: Correlation and inter-
dependence between

different scales

Average — Multi-Scale

Heterogeneity

Dense-phase
Particle-dominate:

Holism

Dependence between scales

Interface:
Particle-fluid compromise

ionism —

Dilute-phase:
Fluid-dominated

Multi-Physics
Linear — Non-linear

Reduct
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Descriptive = Ccorrelative

Complex system

!

I T Description of individual scales
Description of individual scales
Correlation between scales

Lower scale 1

No correlation between scales Closure without stability

Higher scale]

« Analytical (| Véfriational)

Insufficiency of conservation equations:

Gas velocity V)

Solid velocity U,
Dense phase~ Voidage &
Volume fraction f . .
Cluster diameter d, 8 Variables =—> 6 equations

Gas velocity

i Dilute phase < Solid velocit
Modeling With respect to scales p {vgllda\ézm y

extremum tendencies N 5 .
of each dominant K Particle-scale:
mechanisms and their 3 in dense-phase

Description of individual scales COMPIOMISE 4

in dilute-phase Stabil ity ?

: . : Cluster-scale
Correlation between scales T Stability 3 1

Closure with stability condition

dc

Compromise between dominant mechanisms Physical Concept of EMMS Model

i Gas velocity U, A fi "
. Compromise __ ~Dense | Solidvelocity Uy, Energy-minimization multi-scale

‘ phase < Voidage &
", Volume fraction f q .
*‘v‘ Cluster diameter d, 8 Variables =—=> 6 equations
| Dilute [(Gasvelocity U
~ phase 7 Solid velocity Uy
Voidage &

/

Compromise /
between dominant EMMS
P_artdlcle-scile: mechanisms model
in dense-phase ﬁ

In dilute-phase Correlation

Particle-dominated Particle-fluid compromising Fluid-dominated %2 S between scales

& =min W,,=min|, W,, = min : Cluster-scale

=min
Stability Condition:

w. . . W,=min| .- ,,;, — N, =min
=——St_=min Operating st | 2= min st

* (1-g)p Conditions
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Mathematical Formulation

To find: X={ Uy, U, & f,d, U U, &}

Minimizing: N, =

(A-8)p
( F()=mF.f+mF - f1-£)(p, - p,)g =0
F(X)=mF, ’(1"91)(/7;1 -p;)g=0
F(X)=m,F, +mF /(1-f)-mF, =0
F(X)=U,-U, (1-f)-U_ =0
F(X)=U,-U,@1-f)-U,f=0

Verification
Solution
Extension
Application

Limitation

Verification

# Whether or not ?
Nst=min ?

« If yes, why?

http://dc.engconfintl.org/fluidization_xii/129

Summary of the strategy:

Applying the multi-scale method to study the
stability condition of complex systems by
analyzing the compromise between dominant
mechanisms and correlation between
different scales.

Roadmap:
PetroChina

SINOPEC

1984 1987 1994 1999
ldea= model & method = software = industry

Extension Baosteel
Ng=min verification & CED
Upgrading Two-phase

Studied { Turbulence

Three phase

N,= min verified
2004

Emulsion Compromise
Foam l

Studying

|

To be studied :

{ Granular flow

Nano-structure To be Mathematic
Catalysis generalized

Physics
Biological system

Equilibrium: Max. Entropy

Stability
criterion Linear: Min. Entropy

Non-EquiIibrium{ Production

Non-linear: No theory
) available

Fluidization

Verification
Possible: Discrete
simulation

\ {Impossible
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. (Particles
‘ Strategy -

. (Gas — Pseudo-particles
Pseudo-Particle §

Generating meso-scale structure with
micro-phenomena:

‘Ob' ti [Micro-scale description
L Objective-

L Macro-scale phenomena

1024 CPUs + PPM
Solid particle

1024 particles
Fluid (Pseudo-particles)

Ge & Li: CFBS5, 1996; Chem. Eng. Sci., 58, 2003, 1565

N — min was verified

Region D Region G

N, - min

i ATy

Region D
Fluid
EMMS model Radial EMMS model
Particle-Fluid
Systems —_—
Meso-scale structure: Global (macro-scale) structure:
PointA & B Region D Region G

Local (micro-scale) structure:

Li et al., China Particuology, 2005, 3, 290-295.

From complicated to simple

Dense/Dilute
Dense only

) ) Coexistence
# 1988, Non-linear optimization program )

Dilute only
(difficult to use)

+ 1998, Analytical solution
(complicated)

2002, Complete solution
(simple and available from internet): Local structural parameters
8 variables - & Regime diagram
. searching in the parameter space {
6 equations

Choking definition
Ng=min — Solutions

Radial and axial distribution

http://pevrc.ipe.ac.cn/emms/emmsmodel.php3
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Extension to
6 different systems

Extension 2: Gas-Liquid Bubbly Flow

Compromise between movement tendencies of bubbles and liquid

Point A

Region G

Surface
tension
Ny = min

Point B
o
o Na =N, +N,, —>min
o
o

[

—_—

Viscosity . PointA& B Region G

Ny, = min

Nsurf+turb fluctuatlng Nsurf+turb —.min

33

Extension 4: Granular Flow
Compromise Between Two Streams of Granular Flow

Point A

Region G

Stream a
dominant

(Erl-h—»mm)

Stream b PointA&B

Region G
dominant

H, , Hy, fluctuating H,+H,— min
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Extension 1: Turbulent Flow
Compromise between Viscosity and Inertia

Viscosity

W,, — min

Inertia
Wi — max

Point A

temporal compromise Region G
(atany point)

Time step

Point A & B

W, , W, fluctuating

Extension 3: Microemulsion
Compromise Between Hydrophile and Lipophile

Hydrophile
E,, —>min

)

Lipophile
E,; - min

Denotations

H: Hydrophile group (red)

Region C Point A

Region C

Point B

Point A & B Region C

Ewr, Eop fluctuating E epuise—> MiN

T: Lipophile group (blue) W: Water (green) O: Oil (yellow) 34

Extension 5: Foam Drainage
Compromise Between Surface Energy and Viscosity

Liquid

Surface energy
E, - min

A

Viscous dissipation
E, - min

Region G

PointA & B Region G

Es, E , fluctuating E/E ,— min
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Extension 6: Nano Gas-liquid Flow
Compromise Between Interfacial potential and Viscosity

Summary:

2. Dominant mechanisms

Interfacial potential
tends to minimum

S —> min
Compromise

Flow dissipation
tends to minimum

@, —> min

Compromise between dominant mechanisms « Analytical Multi-scale Methodology

Particle

Gas-solid system { g

Viscosity
Turbulence { Inertia With respect to dominant me

Surface tension
Viscosity

Gas-liquid system {
Generality?

Stream A

With respect to scales
Stream B

J y extremum tendencies
Lipophile

of each dominant
Surface energy

. e of imTvieie] aEles mechanisms and their
ipti individu :

Foam dralnage{ Viscous dissipation f compromise

Modeling [«—| Correlation between scales [« stability

Granular flow

Emulsion {

[Extremum tendenc

of mechanism 1 [Extremum tendencyr'J
~ (.of mechanism 2 Jag

Mathematical model of complex systems in
general — Multi-objective variational problem

Applications in CFD

J. Lietal., Chem. Eng. Sci., 2003, 58, 521- 535.
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Computer capacity: dramatic increase

1985: Vax 11/780 . 2005: Dawning 4000
4 : g
106 flops 10" times "™ s tiops

Why
Computation capability
Is far behind computer

capacity?

What
Is the key problem?

Problem: average C,

Current
FLUENT
Softwares< CFX Missing

meso-structure
PHOENICS

EMMS —— C, considering structure

http://dc.engconfintl.org/fluidization_xii/129

CFD computation capability: gradual progress

Mesh FLUENT2 FLUENT4 FLUENT5 FLUENT 6.3
improvement Orthogonal  Structured Tetrahedral  Polyhedral

—

Constitutive K- ¢ KTGF DPM |SGS VOF  +LES
models

Adapted from T. Gessner et al., WCCM 2006, Fluent Inc. & Fluent User Manuals

44

Heterogeneity in a control volume !

Multi-scale CFD:

ﬁ' Two-fluid models j
y '

Average ¢ X

Structure
parameters
&
acceleration

= EMMS

N. Yang et al., Chem. Eng. J., 2003, 96, 71- 80.
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Reproduced meso-scale structures Solid output flux

Simulation [
el W 0
AN 0 L Output solid flux (kg/m’s)
‘ \ “WWWMW EMMS+CFD
Output solid flux (kg/m’s) [
Empirical correlations+CFD
Exp/erlmema\ Simulation Exp/emmenm\
- . . . I NETY T M/ &
o sl
Time (s) Time (s)

CFEX Only CFX + EMMS

CFX CFX + EMMS Fluent Fluent + EMMS

Yang, et al., Chem.Eng.J.,96, 2003, 71 Wang, et al., Chem.Eng.Sci., 62, 2007, 208
49

Regime transition: Choking prediction

Coexistence of dilute and dense regions
in a CFB riser

Height (m)

o
0.60.70.80.9 1.0
Voidage

CFX Only CFX + EMMS CFD + EMMS

Yang. et al., Ind. Eng. Chem. Res., 43, 2004, 5548 Gidaspow & coworkers, Chem. Eng. Sci., 61, 2006, 5544 Simulation

51

CFD + EMMS: software development

Computation platform

Commercial \

S EUE R
COd S temporal
_ FEHNR D LT BT 7 EBAGRGT B BB R
: 5

Interface: UDFs

Software
(registered) Flow in

EMMS/Global | . °°horid EMMS CFD+EMMS Particle Method

EMMS/Matrix

EMMS/Axial http://pevrc.ipe.ac.cn/femms/emmsmodel.php3
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Software — EMMS

EMMS software package for calculating
the axial and radial distribution of solid

EMMS software package at website concentration, solid velocity and gas
(http://pevrc.ipe.ac.cn/emms/emmsmodel.php3) velocity in CFB

Input Interface

Output Interface

Applications to industries

SINOPEC Stage 1 :
MIP (max. iso-paraffins) process

Novel FCC Riser
Height: 40 m
Diameter 1~3.5 m

Determine design parameter
Diameter

velocity
Inventory

Shade of color: concentration

http://dc.engconfintl.org/fluidization_xii/129

Software — EMMS+CFD

Input window

Output figures

Pressure profile in

pressure

a) CFB boiler b) EMMS calculation

SINOPEC Stage 2 :

Output tables

boiler

pressure

¢) On site plant data printout

Further optimization of MIP process

=

{
<
{ — ]

i
|

b4 088 082096 150

1Q
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SINOPEC: the influence of orifice number SINOPEC: the influence of distributor shape

Arc-shaped Basin-shaped Cone-shaped
98 orifices 169 orifices 390 orifices

SINOPEC: the influence of outlets

=1
)

==
.

v s 1 B w »
Heigh (m)

Relative solid concentration

—— model

= measurement

|
i a

‘ 4 - Vool ET T T o S
| Relative distance from the wall

Upright outlet Sideward outlet

PetroChina: slurry bed loop reactor Baosteel: Simulation of ore preparation for

Before optimization

After optimization
Zhang et al. (2004), Ind. & Eng. Chem. Res. 43: 5521.
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Common focus of chemistry and process engineering

Applications
in future

Relative importance

Structure of Apatite Sphere

Chemlstl’y Reaction -
l dominated §& Compromise
—— —

Reaction Function Diffusion-
dominated i o
- Structure — H. Zhang et al., Chem. Mater., 2005, 17, 5824-583(

Transfer Properties Structure of Cu,O
Reaction m
. control Compromise
Chemical e -
Engineering Diffusion g““ﬁf

Qingshan Zhu’s group, Institute of Process Engineering, CAS

Comparison between CFD computation and

Multi-scale mass transfer :
experiments (Ouyang et al., 1995, AIChE J.)

Averaged flow & Multi-scale flow & Multi-scale flow

averaged mass transfer Averaged mass transfer multi-scale mass transfer
—+ —> Meso-scale -

Shgtaic  SNaynamic

A
el

e
Bxgl B o
ﬁ Shd\\uts Shdense

Multi-scale
Structure-dependent Sh
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Limitation of the EMMS model:

Gas velocity Uy,
Solid velocity U,
Dense phase < Voidage

8 Variables =—> 6 equations

X Gas velocity U:,,_
Dilute phase {Solid velocity U

Voidage & Compromise

Limitations & Difficulties JurEn  Denseprase: | betwean dominen

l ~ Particle-dominated mechanisms

Cpe =105 ﬁ
Interface:

= Particle-fluid Correlation
compromise between scales
Cp<10

Dilute-phase:
Fluid-dominated
Cor~100 Wy =min | g = pjp — N =min

Stability Condition:

Operating Conditions

Applicability of stability condition

2.5x10°

2.0x10°

[ No, at local point

1.5x10°

—
[%2]

Nst:m | n ? 1.0x10°

Y how big volume ? ©
5.0x10*

\_ Yes, at big volume

- T Conclusions
Constitutive model
Focus: Spatio-temporal multi-scale

No best! structure

« Multi-scale:
# Umbrella: Complex systems

Cluster diameter But all useful !

» Methodology: Multi-scale method
Tool: Computer simulation

Micro-mechanisms . . Nano-technology
Highlights: \aterial science

Systems biology

# Discrete:

Individual —— Integration !!
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