

Refereed Proceedings The 12th International Conference on Fluidization - New Horizons in Fluidization

Engineering

Engineering Conferences International

 $Year \ 2007$

PRESENTATION SLIDES: Analytical Multi-Scale Methodology for Fluidization Systems - Retrospect and Prospect

Jinghai Li Institute of Process Engineering Chinese Academy of Sciences, Beijing, jhli@home.ipe.ac.cn

This paper is posted at ECI Digital Archives. http://dc.engconfintl.org/fluidization_xii/129

Mathematical Formulation

Summary of the strategy:

Applying the *multi-scale* method to study the *stability* condition of complex systems by analyzing the *compromise* between dominant mechanisms and *correlation* between different scales.

Pseudo-Particle	Strategy
	Solid particle
	Fluid (Pseudo-particles)
<u>Ge & Li: CFB5, 19</u>	06; Chem. Eng. Sci., 58, 2003, 1565

1. Systems 2. Dominant mechanisms		minant mechanisms	3. Local extremum existence indication		4. Global extremum existence indication	
	Compromise	$(H_a = \min) _{u_a = \min}$		www.		
flow of granular materials	Definition	$H_a - potential a$ $H_b - potential b$	No	mum	Yes	
	Compromise	$(\overline{W}_r = \min)_{\overline{W}_r = \max}$	No	Luters a seried		
furbulent 👔	Definition	\overline{W}_{r} viscous dissipation \overline{W}_{1c} turbulent dissipation		wann	Yes	
Compromise	$(W_a = \min)_{comin}$		MAMA		1	
Gas-solid system	olid Definition	W _a volume specific energy consumption for transporting and suspending particles & local voidage of the identified area	No	MM MM	Yes	\mathbf{i}
	Compromise	$(N_{neb} = \min)_{N_{nef} = \min}$				
furbalent ps-liquid flow	Definition	$N_{\rm tarb} \cdots$ dissipation liquid in the turbulent $N_{\rm surf} \cdots$ surface dissipation	No	An	Yes	\sum_{n}
	Compromise	$(\varphi_r = \min)_{S=\min}$		Mary M. Mary		1
Nano gas-liquid pipe flow Definition	φ_{t} dissipation associated with the transportation of unit amount of kinetic energy across unit length S surface energy in the system	No	mm	Yes	Lemme	
1000	Compromise	$(E_s = \min) _{E_s = \min}$		Providence and		
Foam drainage Definition	$\begin{array}{l} E_{e} \ \cdots \ \text{surface energy} \\ E_{\mu} \ \cdots \ \text{viscous dissipation} \end{array}$	No		Yes	h	
	Compromise	$(E_{WT} = \min)_{E_{ext} = \min}$		6		
Function (1996)	and province	E un linonbilic notential	No	mon	Yes	N

Why Computation capability is far behind computer capacity?

What is the key problem? Heterogeneity in a control volume !

Regime transition: Choking prediction

Bayer: Pressure profile in boiler

c) On site plant data printout

Acknowledgement

Financial support

NSFC (Natural Science Foundation of China) MOST (Ministry of Science and Technology) CAS (Chinese Academy of Sciences) ETH (Swiss Federal Institute of Technology) AvH (Alexander von Humboldt Foundation)

Prof. Mooson Kwauk

Thank you !