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INTRODUCTION 

  
The main application of WCTC’s is mould temperature 
control in the plastics industry. Depending on the raw 

material, the water temperature ranges between 60°C and 
150°C. So fouling occurs, and some customers have to 
change the heat exchanger and/or the heater after only few 

months of operation.  Nowadays, different techniques are 
available (ultrasound (e.g. Bott, 2000), temperature and heat 

flux measurements (e.g. Abu-Zaid, 2000)), but limitations 
exist mainly due to the fact that the number of sensors is 
limited. So, only localized fouling can be detected. A more 

global approach has been proposed (Prieto et al., 1999). It is 
based on the difference between the real system and its 

model. It can be shown that for heat exchangers that have a 
low Ntu, this technique detects only quite important fouling. 
Hence it is necessary to move to more complex supervision 

techniques. 
 

After having theoretically shown that an auto-adaptive 
neural network is able to detect fouling in an electrical 
heater (Lalot and Lecoeuche, 2003), the aim of this paper is 

to present (using actual experimental data) the benefits of a 
new supervision architecture (Lecoeuche et al., 2004). This 
new architecture is an improvement of the architecture used 

in the previous work (Lalot and Lecoeuche, 2003). The aim 
of this system is to alert the customer before any significant 

degradation of the capabilities of the WCTC occurs. This is 
possible when using pattern recognition techniques. The 
latter are developed to supervise systems for which models 

are difficult to estimate using analytical techniques.  
 

In the pattern recognition approach, a characteristic vector 

k
X , that represents the current functioning state, is 

extracted from the amount of process information. Then, 

using an adequate dataset, a learning procedure is used in 
order to obtain the n-dimensional map of the various 

functioning modes of the system. The diagnostic is 
eventually achieved by labeling the current state with its 
membership class. Here the difficulty is that, in case of 

fouling, the normal functioning mode slowly evolves with 
time. 
 

This difficulty is curcumvented by using a specific 

supervision architecture allowing a continuous modelization 

of the functioning modes. The key idea is to use a 

classification neural network (Lecoeuche and Lurette, 2003) 

that continuously models functioning modes corresponding 

to the current functioning states of the system. 

 

When fouling occurs in a WCTC, the model of the normal 

functioning mode deviates from its normal position. Hence, 

its representative parameters evolve. Some specific tools 

have been introduced into a monitoring stage, to detect and 

to analyze these evolutions. 

 

After an overview of the supervision system which is 

presented in the first section, the second section presents the 

AUDyC neural network used to model evolutionnary modes. 

In the third part, two tools for fouling detection are 

introduced. The first one is dedicated to fast drift detection. 

This is equivalent to the detection of an “observation drift”. 

The second one is dedicated to the detection of slow drifts 

or ”mode drift”. Finally, some results that come from real 

experiments on a WCTC, are presented in order to illustrate 

the reliability of  the tools. 

1. Overall presentation of the supervision 

system 

The supervision system (Lecoeuche et al., 2004) that 

consists of three modules is developped to continously 

supervise an indutrial process. The three main modules work 

on line and communicate together to exchange information 

in a cyclic maner.  

 

 

 

 

 

 

 

Fig. 1. : Presentation of the supervision system 
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- The modelling module is the core of the system. The 

AUDyC network (Lecoeuche and Lurette, 2003) is chosen to 

achieve the modelization of the functioning modes. This 

choice is motivated by the fact that this network is 

developed to easily handle data acquired online.  

 

- The second module, the monitoring module, is dedicated to 

the detection of the system functioning modes evolutions. 

Depending on the velocity of these evolutions, two kinds of 

system evolutions have to be detected: observation drift (fast 

evolution) and mode drift (slow evolution).  

 

- The third module, the diagnostic module, is used to detect 

the location and the labels of the system failures. This is 

based on the analysis of the current functioning state 

membership degrees to known modes. 

 

At last, the process user can communicate with the 

supervision system through the diagnosic interface. 

2. AUDyC NN and dynamical modelling 

The modelling module is built with the help of the AUDyC 

NN (Lecoeuche and Lurette, 2003). The structure of this 

network is very common: one input layer (D neurons), one 

prototype layer (J neurons) and one output layer (I neurons). 

Each neuron of the output layer represents a functioning 

mode. Each mode is defined by one or several gaussian 

models (prototypes). The membership degree j
kµ  of the 

characteristic vector Xk to the prototype 
j

P  (defined by its 

center MPj and its covariance matrix 
jP

Σ ) is evaluated using 

equation 1: 
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To ensure a continuous adaptation of the network, the online 

learning process of the network consists of three stages:  

- First stage: ‘‘Classification’’. The construction of the 

network is achieved by the creation or the adaptation of 

nodes (prototypes and/or modes). 

 

The prototype creation is based on a distance rejection rule. 

For example, if a new characteristic vector 
k

X is not close 

to any existent prototype, a prototype is created with 
k

X as 

its center and 
ini

Σ  as its initial covariance matrix. 

Otherwise, if the data is close to a prototype, the adaptation 

of this one is done iteratively thanks to recursive equations: 
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- Second stage: ‘‘Fusion’’. This stage comes to merge 

modes that are close in the representation space. In fact, 

after the classification stage, some of the prototypes share 

data but belong to different classes. This makes ambiguities 

that are treated during this phase.  

- Third stage: ‘‘Elimination’’. This stage is used to 

eliminate modes with too few assigned data or that are 

obsolete. 

Here is only given a brief overview of the AUDyC network. 

More information on the learning strategies are presented in 

(Lecoeuche and Lurette, 2003), (Lurette and Lecoeuche, 

2003), and (Lecoeuche et al., 2004). 

 

These three stages are carried out recursively. At the end of 

each iteration, information is sent to the monitoring module. 

These information consist of all the parameters of the 

functioning modes of the process under supervision. 

3. Online monitoring tools 

To be sure that the monitoring module is efficient, two tools 

are necessary. The first one is used for the detection of fast  

drifts. The latter correspnd to the displacement of the 

observations that does not lead to the modification of the 

functioning mode in the representation space. The second 

tool is used for the detection of slow drifts. This correspond 

to the displacement of the functioning mode. For this study, 

two assumptions are made : 

- the normal functioning mode has a Gaussian 

distribution represented by only one mono-prototype class 

- its label is known thanks to a prior knowledge. 

Fast drifts detection tool 

For the fast drifts, the main problem is to detect the drift of 
observations moving away from the current functioning 

mode. In this case, the observations do not modify the 
prototype that defines the normal functioning mode. Hence, 
the membership degree of the current observation to this 

particular prototype (eq. 1) decreases quickly. It is then 
necessary to get a tool which is able to allow for small 

variations of the membership degree and detect as soon as 
possible the drift. 
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A specialized tool, called “Generalized Cusum”, has been 

developed. It estimates the sum of the cumulated errors 

between the current observation and the current normal 

mode 
1
P  . It is based on a decision function gk (with a 

threshold minµτ =  fixing the membership bounds of the 

normal mode). 
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If the samples move away from the “normal” model, the 

function gk increases gradually up from zero. To avoid the 

detection of a drift when the membership degree value is 

notably biased by a measuring noise, a threshold hf is 

determined for the decision function gk is fixed. An 

observation drift is detected only when the value taken by gk 

is higher than the detection threshold hf. More details are 

found in (Amadou-Boubacar and Lecoeuche, 2005) 

Slow drifts detection tool 

In this case, as the evolution is slow (like fouling) the 
current functioning mode evolves according to (2). The 

objective of this tool is to detect if a deviation occurs and to 
inform towards which mode (known or unknown) the system 
moves.  A specific tool has been developed (Berthier, 2004) 

and is based on the computation of drift rates. 
 

To be able to compute a drift rate, it is necessary to compute 
the distance between two classes (e.g. the current one and 
the class corresponding to a failure mode), each being 

represented by a center and a covariance matrix. It has been 
shown that for the purpose of drift detection, the Kullback-

Liebler distance is the most convenient (Zhou and 
Chellappa, 2004).  

 

Then, the drift rate towards a known failure j is computed by 

2
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k, index on the set of the last “m” memorized current modes 
and j, index on the set of known failure modes. 

 
Once each  jth component of the vector T is computed (one 

for each known failure except j=0 representing the current 
mode at the initial time t0), 2 values are determined : 

Min = minimum(Tj) and IndiceMin = argmin(Tj)   (5). 

The slow drift decision function is based on these two 
values.  

 
Alg. 1 : Slow drift decision rule 

4. Application to the WCTC monitoring  

 

The WCTC used  for the experiments consists of a pump, a 

controller, an electric heater, an exchanger, a filter and 

connection pipes. 

  

First of all, some characteristics (discriminating  

information) being sensitive to system deviations but less 

sensitive to the signals disturbances are selected to build the 

characteristic vector. It has been checked that the pressure 

losses ratios (local to total) are independent of the mass flow 

rates, of the heater electrical power, and of the load/sink 

demand. Figure 2 shows that these ratios (centered and 

normalized) make possible the discrimination of the drifts 

(each drift is carried out separately). 
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Fig. 2. : The different drifts 

 

The supervision of the WCTC is carried out on-line 

according to figure 1. The AUDyC neural network learns the 

functioning mode of the WCTC (modelling module). In the 

monitoring module, the two detection tools are used in 

parallel to analyze the temporal outputs of the AUDyC and 

then detect failures and/or abnormal deviations. 

 

Fouling is simulated by using some supplementary valves 

installed in the closed loop of the WCTC upstream of each 

component. Other failures are electrical. 

  

if Min < hs (hs is a negative threshold), 

  <<Drift detection towards "IndiceMin">> 

 return 

 if (T0 > 0.2*h
s
)  

  <<Drift detection towards "Unkown">> 

 return 

Otherwise 

  <<No drift>>  

return
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Figure 3 (2D projection) illustrates a fast drift detection due 

to a electrical heater plugging. Figure 4 illustrates the 

detection of a slow drift due to the exchanger fouling.  

 

 
Fig. 3. : Illustrations of the fast drift detection tool 

 

 

 

 

Fig. 4. : Illustrations of the slow drift detection tool 

5. Conclusion 

 
A global strategy for the monitoring of a WCTC has been 

presented. This one uses a specific supervision system based 
on a modelling module allowing the definition of updated 
functioning modes and specific monitoring tools designed to 

detect fast drifts (breakdowns) and slow drifts (fouling). 
Combining their properties, the monitoring of complex 

system such as a WCTC is reliable. 
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