

CO₂ Conversion to Organic Compounds and Polymeric Precursors

Authors: Aurea A. Barbosa, Heitor B. Pereira Ferreira, Claudio J A Mota and *Jussara Lopes de Miranda**

JLMiranda

Institute of Chemistry

Federal University of Rio de Janeiro (UFRJ)

Rio de Janeiro Brazil

Outline

- Energy Supply in Brazil
- Presentation of the Lacqua's projets
- Motivation for CO₂ conversion
- Industrial uses of CO₂
- Challenges for CO₂ conversion
- CO₂ Conversion by heterogeneous catalysis
- CO₂ Conversion by Homogenous catalysis
- CO₂ Capture using metal organic frameworks
- Future Goals

JLMiranda

ΑСΟ

Energy Supply in Brazil, 2007 46.4 % of Renewable Energy

Petroleum and derivatives 36.7%

- Ethanol Sugar cane 16%
- Hydroelectricity 14.7 %

Biomass 15.6%

Natural Gas 6.3%

Coal 6.2%

Nuclear 1.4 %

METHANOL, FORMIC ACID, FORMALDEHYDE POLYMERS PRECURSORS

Motivation for CO₂ Conversion

Main Sources of CO₂

Table SPM.1. Profile by process or industrial activity of worldwide large stationary CO_2 sources with emissions of more than 0.1 million tonnes of CO_2 (MtCO₂) per year.

Process	Number of sources	Emissions (MtCO ₂ yr ⁻¹)
Fossil fuels		
Power	4,942	10,539
Cement production	1,175	932
Refineries	638	798
Iron and steel industry	269	646
Petrochemical industry	470	379
Oil and gas processing	Not available	50
Other sources	90	33
Biomass		
Bioethanol and bioenergy	303	91

IPCC - Third Assessment Report (TAR)

LACQUA Laboratório de Catális e Química Ambiental

Current Industrial Uses of CO₂

Industrial Processes that use CO ₂	Global Capacity /year	Quantitity of CO_2 fixed
Urea	95 Mt	54 Mt
Salicylic Acid	70 Mt	25 Mt
Methanol	20 Mt	2 Mt
Cyclic Carbonates	80 Mt	~ 40 kt
Polypropilenocarbonate	70 Mt	~30 kt

CO2, JLMiranda

Aresta, M., Carbon Dioxide Recovery and Utilization, Kluwer Academic Publishers, Netherlands, 2003

LACQUA Laboratório de Catális e Química Ambiental

Expected Benefits from CO₂ Conversion

Environmental

Contribution to the reduction in CO₂ emissions

Economical

Social

CO2, JLMiranda

Scientifical

CO₂ conversion into products of economical value

Contribution to a better human health & better climate conditions

Synthesis of new designed catalysts and the study of C1 chemistry

Challenges to CO₂ Conversion

- Use of CO₂ as the starting material for the synthesis of organic chemical products, carbohydrates and polymers

- Need of pure and concentrated CO₂ for conversion processes – implies the costs of capture and transportation

CO2, JLMiranda

-Energy demand for CO₂ conversion – use of energetic reagents and good catalysts

- Global market context for the products that are synthesized from CO_{2}

ACOL

Examples of Industrial Processes That Use CO₂ Urea Production

$CO_2 + 2 NH_3 \longrightarrow H_2N-CO-NH_2 + H_2O$

T= 185-190°C, P=150-220 atm

It occurs in two steps

$CO_2 + 2 NH_3 \rightarrow H_2N-COO^-NH_4^+$

CO2, JLMiranda

$H_2N-COO^-NH_4^+ \rightarrow H_2NCONH_2 + H_2O$

It is the product that uses the greatest amount of CO₂
Global production in 2002 – 100 millions of tons/year = 22 millions of tons CO₂
More than 54 % of global capacity is in Southeast Asia
Urea can be used as a fertilizer 46%) or raw material for carbonates
It can be associated with CO₂ Capture

ACOU Laboratório de Catál e Ouímica Ambient: **Production of Dimethyl Carbonate (DMC)** without phosgene and chlorine - The usual route for DMC synthesis $CO + CI_2 \rightarrow COCI_2$ $COCI_2 + 2 CH_3OH \rightarrow CH_3OCOOCH_3 + 2 HCI$ (1) Ethylene carbonate production process quantative reaction CO_2 CH2 - CH2 **Industrial Process from** ethylene oxide (EO) **Asahi Chemical Industry: Polymers synthesis since 2002** ethylene carbonate (EC) Production (2) Dimethylcarbonate and ethylene glycol production process 50.000 ton/year CH₂OH Removal of CO₂ 1730 $2 \text{ MeOH} \longrightarrow \text{MeO-C-OMe}$ ton/10.000 ton PC CH₂OH dimethylcarbonate DMC ethylene glycohol (EG) hylene carbonate (EC)

CO2, JLMiranda

yield, selectivity: >99 %

Capture and Conversion of CO₂ into Organic Carbon Products and Polymeric Precursors

Synthesis of catalysts able to aid CO_2 conversion Conversion of CO_2 into organic products

Fixation of CO₂ into Organic Products

CO2, JLMiranda

CONVERSION

METHANOL, FORMIC ACID, FORMALDEHYDE PRECURSORS OF POLYMERS ACOU

EXPERIMENTAL

1- Heterogenous Catalysis- Hydrogenation of CO₂

Ni, Ru catalysts

JLMiranda

 $CO_2 + H_2$ — Organic products

2- Homogeneous Catalysis – CO₂ reaction with methanol

Sn catalysts

 $CO_2 + H_3C-OH$

Organic products 15

ACOU

Experimental Steps: Part I - Heterogenous Catalysis-Hydrogenation of CO₂ - Synthesis of Catalysts

- Synthesis of catalysts based on complexes of nickel and ruthenium eleven catalysts were synthesized.
- Synthesis of the mesoporous (silicate)
- Intercalation of the cationic complexes of nickel and ruthenium into the mesoporous
- Characterization of the catalysts:
- Elemental Analysis

CO2, JLMiranda

- Nuclear Magnetic Resonance
- Infrared Spectroscopy
- X-ray diffraction

- Thermogravimetric Analysis
- Electronic analysis

Intercalation results

Sample	Distance d (Å)	Δ d (Å)
Sodium mesoporous	15.21	-
mesoporous+surfactant /ButOH	20.67	5.46
Ni ²⁺ intercalated	15.17	5.50
Ru ³⁺ intercalated	15.28	5.39
Cat Ni1 intercalated	18.21	2.46
Cat Ni2 intercalated	18.92	1.75
Cat Ru1 intercalated	18.21	2.46

LACQUA Laboratório de Catálise e Química Ambiental **Conversion Results of Heterogeneous Catalysis**

11 Catalysts synthesized – 7 were active – 20 to 30 % of conversion, pressure = 1 atm

Catalyst	Product	Temp (°C)
Cat 1	Formaldehyde	149
Cat 2	Formaldehyde	111-124
Cat 3	Methanol, Formic acid, formaldehyde	150-152
Cat 4	Methanol	152
Cat 5	Formic acid	152
Cat 6	Methanol	150-152

CO2, JLMiranda

Conclusions from Conversion of CO₂ into

Organic Products by Heterogeneous Catalysis

◆ 11 Catalysts were synthesized and characterized

• Seven catalysts were able to convert $CO_2 \rightarrow 30$ % of total conversion

 The main products of the conversion were: methanol, formic ac. and formaldehyde

• Mild conditions for conversion : P=1 atm and $\Delta T = 120$ to 150 °C

♦ 1 Patent submitted.

CO2, JLMiranda

the Conversion Test

JLMiranda

Data from near infrared spectrum and far infrared spectrum of the catalyst before and after the catalytic test showed that

Conclusions from Homogeneous Catalysis Conversion of CO₂ into Organic Products

-CO₂ insertion into Sn-O bond of the catalyst - Formation of Oxygenated organic products

JLMiranda

ACQU boratório de Cat

Conversion of CO₂ into Organic Products

LACQUA Laboratório de Catálise e Química Ambiental

Projects on CO₂ Capture

-Synthesis of new metal organic frameworks : chromium, copper and zirconium

- Synthesis of MOFs with lower cost

J L Miranda

- Collaboration with Professor Christian Serre-Institute Lavoisier, Université de Versailles Saint-Quentintin-En-Yvelines.

ACO

Future Goals

- Study of the recycle of the catalysts
- Comparison between nickel and ruthenium catalysts
- Use of zinc catalysts in homogeneous catalysis
- Synthesis of new MOFs with lower cost and greater selectiveness
- Use of ethanol to react with CO₂

JLMiranda

Acknowledgments

programa de Recursos Humanos da ANP

Brazilian Council for Scientific And Technological Development Brazilian Agency of Petroleum, Natural Gas and Biofuels -Human Resource Program

do Petróleo

Gás Natural e Biocombustiveis

PRH 01-Petroleum Chemist Program

LACQUA Laboratório de Catális e Ouímica Ambiental

LACQUA' S TEAM

Prof Jussara L Miranda – IQ/UFRJ Prof Luiza C Moura- IQ/UFRJ Prof Marco Barreto – IQ/UFRJ Marcio G. Franco (Msc) Aurea A. Barbosa (phD) Heitor Breno Ferreira (phD) Elisângela Souza (Msc) Sueli Akemi (Msc) Francisca Sobral (Msc) Fernanda Luna da Silva (Grad.) Lorraine Greco (Grad.) **Collaborations**

Chirstian Serre- Université Yves-Saint-Quentin- France Prof. Claudio Mota – IQ/UFRJ - Brazil Prof. Heloise Pastore- Unicamp – Brazil Prof. Diana Azevedo- UFC- Brazil ACQUA boratório de Catáli ouímica Ambienta

Thank you for your attention

jussara@iq.ufrj.br

Cristo Redentor – Rio de Janeiro One of the Ten New World Wonders