GHG Impact of Using Fast Pyrolysis Oil for Electricity and Biofuel Generation

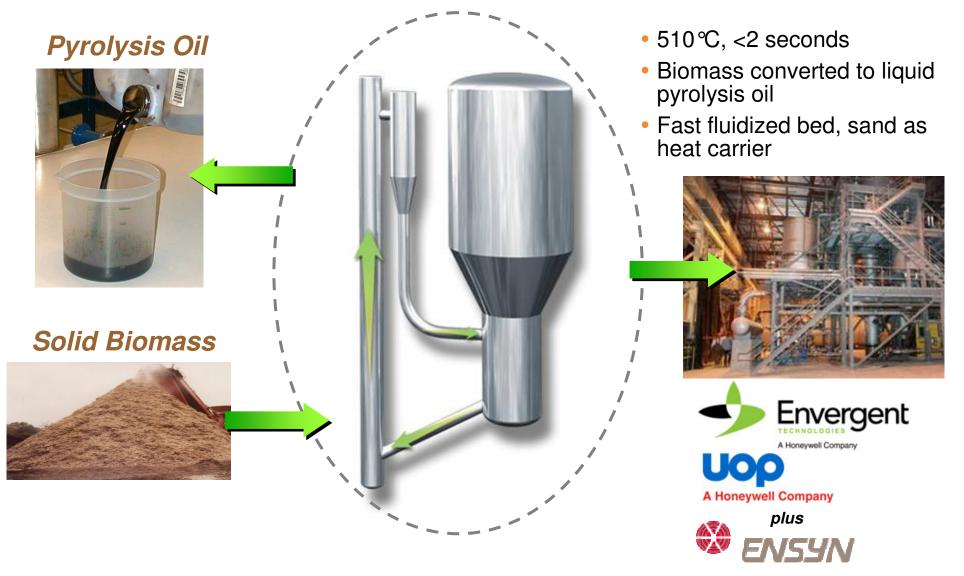
Tom Kalnes UOP LLC, A Honeywell Company

CO₂ Summit: Technology & Opportunity June 6-10, 2010 Vail, Colorado

© 2010 UOP LLC. All rights reserved.

Introduction

- RTP[™] Rapid Thermal Processing Technology
- Heat, Power and Fuel Applications


Life Cycle GHG Assessments

- Pyrolysis Oil from Forest Biomass
- Electricity via Pyrolysis Oil Combustion
- Gasoline via Pyrolysis Oil Conversion
- Summary & Technology Benefits

Rapid Thermal Processing Technology

Commercially Proven Patented Technology

UOP 5398A-24

Feedstock Sources

Forestry and Pulp and Paper

- Wood chips, sawdust, bark
- Forest & mill residues, short rotation crops

Agricultural

- Residues corn stover, expended fruit bunches from palm (EFB), bagasse
- Purpose-grown energy crops miscanthus, elephant grass

Post-consumer

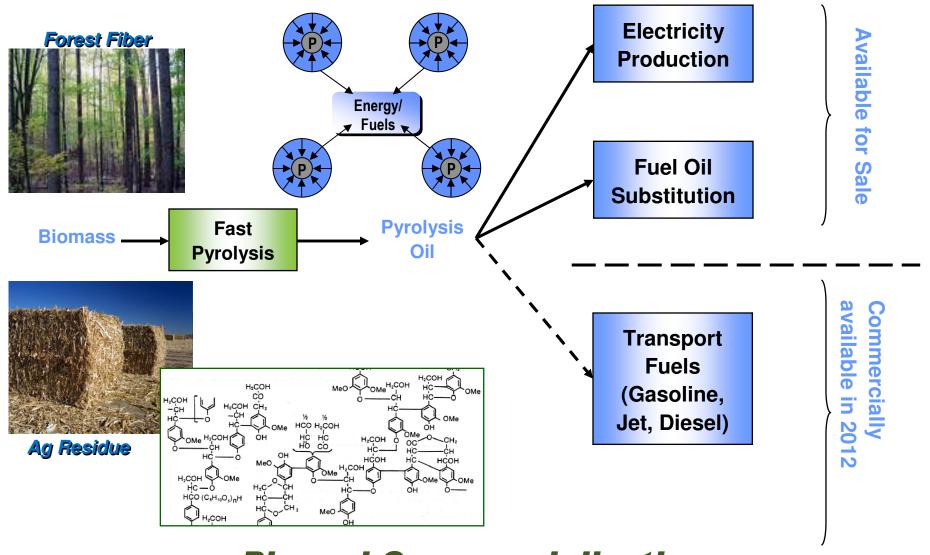
- Construction and Demolition Waste, Categories 1&2
- Municipal solid waste (future)
- DoE study 2005 > 1 billion ton per year available in United States alone

Cellulosic Feedstocks Widely Available

RTP[™] Pyrolysis Oil Properties

- Pourable, storable and transportable liquid fuel
- Energy densification relative to biomass
- Contains approximately 50-55% energy content of fossil fuel
- Stainless steel piping, tankage and equipment required due to acidity
- Requires separate storage from fossil fuels

Comparison of Heating Value of Pyrolysis Oil

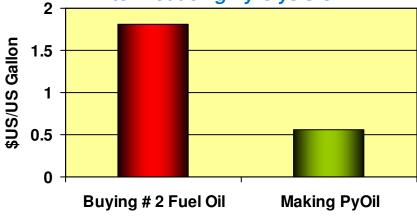

and Typical Fuels

Fuel	MJ / Litre	BTU / US Gallon	
Methanol	17.5	62,500	
Pyrolysis Oil	19.9	71,500	
Ethanol	23.5	84,000	
Light Fuel Oil (#2)	38.9	139,400	

Suitable for Energy Applications

Pyrolysis Oil to Energy & Fuels Vision

Phased Commercialization



Pyrolysis Oil as a Fuel Oil Substitute

- Specialized burner tips improve flame/burning
- Low emissions (GHG, NOx, SOx)
- Fuel consistency ASTM D7544
- Flexibility to decouple pyrolysis oil production from energy generation (location and time)
- Low cost liquid biofuel
 - ~40% cheaper to make and use pyrolysis oil than to purchase #2 fuel oil on an equivalent energy basis
 - 400 BDMTPD RTP Unit
 - Assumes 60 \$US/bbl crude
 - Includes RTP operating cost and 15-yr straight line depreciation of CAPEX
 - 330 Days per Year

Comparison of Cost of Buying #2 Fuel Oil to Producing Pyrolysis Oil

~ 8 \$US Million per Year Savings

- Compatible with specialized turbines
- Green electricity production cost is ~0.12 \$US/kWh
 - Includes RTP operating cost and depreciation of CAPEX (including gas turbine)
- Experience in stationary diesel engine as blend with fossil fuel
 - Operation with 100% pyrolysis oil under development

Pyrolysis Oil to Green Transportation Fuels

- Conversion Objectives
 - Remove oxygen atoms
 - Reduce acidity and viscosity
 - Shape molecules to match gasoline and diesel/jet fuel hydrocarbons
 - Commercialization expected in 2012
- Solution
 - Thermochemical upgrading; leverage UOP's extensive hydroprocessing experience
 - Continuous, reliable guaranteed process, per current refinery standards

Achieved in Lab, Working on Scale-up

- Conducted to ISO 14040 standards
- LCA software employed SimaPro 7.1 Cumulative Energy Demand & IPCC GWP 100a methodologies
- Functional unit for power = 1 kWh electricity generated
- Functional unit for biofuel = 1 MJ of fuel energy
- System boundaries: Raw material extraction (cultivation) through either electricity production or fuel combustion (WTW for biofuel)
- Primary Focus: Emission of GHGs
- Several feedstocks considered
 - Logging residues
 - Hybrid poplar
 - Hybrid willow
 - Sawmill waste

LCA study team included: Dr. David Shonnard, Professor MTU Jiqing Fan, Ph.D. Candidate Matthew Alward, Undergraduate Researcher Jordan Klinger, Undergraduate Researcher Adam Sadevandi, Undergraduate Researcher

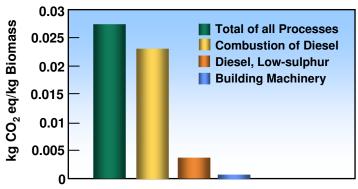
RTP[™] Mass & Energy Balance

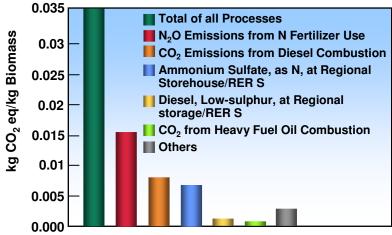
400 BDMTPD of Hardwood Whitewood

Feed, wt%			
Hardwood Whitewood	100	Yields For Various Feeds	
Typical Yields, wt% Dry Feed		Piomooo	Typical
Pyrolysis Oil	70	Biomass Feedstock Type	Pyrolysis Oil
By-Product Vapor	15		Yield, wt% of Dry Feedstock
Char	15	Hardwood	70 – 75
Pyrolysis Vapor		Softwood	70 - 80
		Hardwood Bark	60 - 65
		Softwood Bark	55 – 65
Biomass Reheater		Corn Fiber	65 – 75
Feed Reactor & Sand		Bagasse	70 – 75
Ho Sand	Durahula Oli	Waste Paper	60 - 80
Blower	- Pyrolysis Oil		
Recycle Gas Blower			

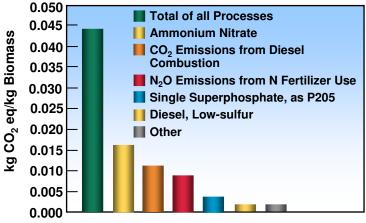
- Cellulosic Feedstock Flexible
- High Yields of Pyrolysis Oil, Co-products provide Process Energy

By-Product Ash


• Minimal Net Utilities (primarily electrical power)

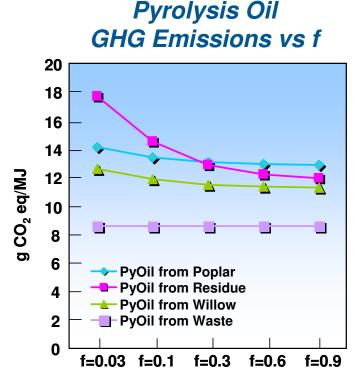

Cultivation and Harvesting

	Residue	SRF Crops	
	Logging	Willow	Poplar
Biomass Yield			
odt/ha/yr	0.62	11.95	13.50
GHG			
kg CO ₂ -eq/kg dry Biomass	0.027	0.035	0.044


GHG Contribution by Process Logging Residue

GHG Contribution by Process Willow

GHG Contribution by Process Hybrid/Poplar

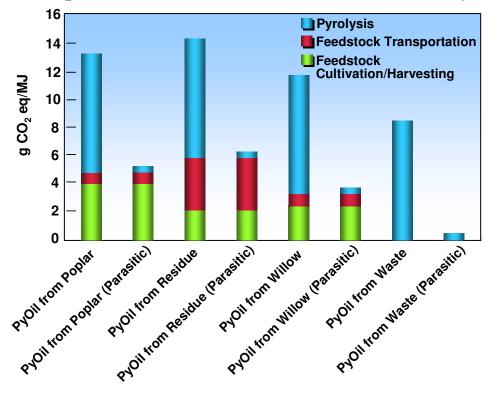

Life Cycle GHG Emissions

gCO ₂ eq /MJ	PyOil Logging Residue	PyOil Willow	PyOil Poplar	PyOil Waste
Biomass Cultivation and Harvesting	2.1	2.4	4.0	0
Biomass Transportation	3.8	0.9	0.8	0
Pyrolysis	8.6	8.6	8.6	8.6
Total	14.5	11.9	13.4	8.6

$$\mathbf{r}_{circle} = \frac{2}{3} * \mathsf{T} * \sqrt{\frac{F}{\pi * Y * f}}$$
 (Wright et. al.)

- t: the tortuosity factor of the road
- f : fraction of land devoted to biomass crops
- F: feedstock biomass required in (short ton / acre / year)
- Y: yield of biomass (short tons / acre)

GHG Sensitivity to Transport & Energy Source A Honeywell Company

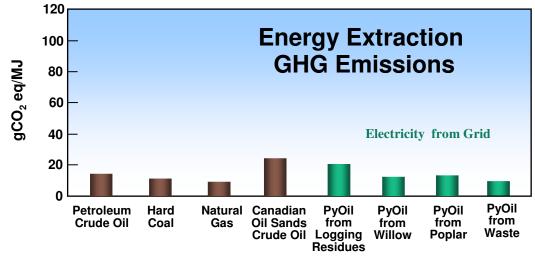


f Value = Fraction of Land in Cultivation

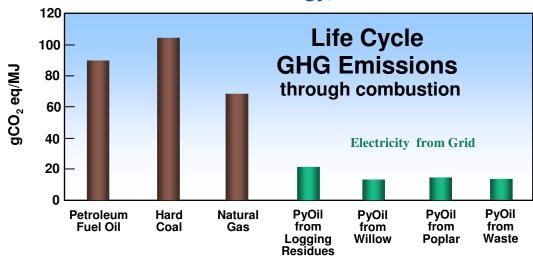
	f=0.03	f=0.1	f=0.3	f=0.6	f=0.9
r _{circle} (miles) Poplar	20.05	10.98	6.34	4.48	3.66
r _{circle} (miles) Willow	21.34	11.69	6.75	4.77	3.90
r _{circle} (miles) Residue	93.74	51.34	29.64	20.96	17.11

Pyrolysis Oil GHG Emissions vs Power Source

Imported Power (US Grid Mix) vs. Parasitic System



In parasitic system, a portion of the electricty generated from pyrolysis oil is used to operate RTP and Biomass pretreat units


Transportation Distance vs. f

Comparison of GHG Emissions Cradle to Delivered Energy

Comparison of GHG Emissions Cradle to Delivered Energy, and Burned

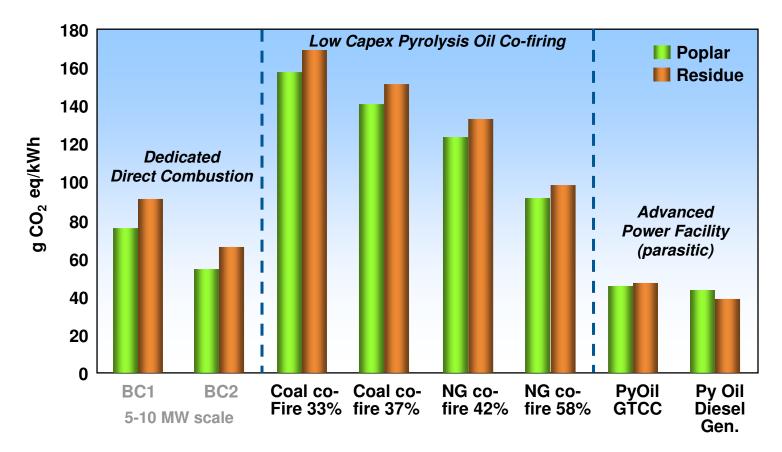
Pyrolysis Oil Production foot print similar to other energy alternatives Assumed biomass transport distances

- 200 km for logging residues
- 25 km for short rotation forest crops
- 0 km for sawmill residues (waste)

Pyrolysis Oil *Life Cycle* foot print *Greener* than other alternatives

- 70-90% lower GHG emission
- SO_x emission similar to Natural Gas

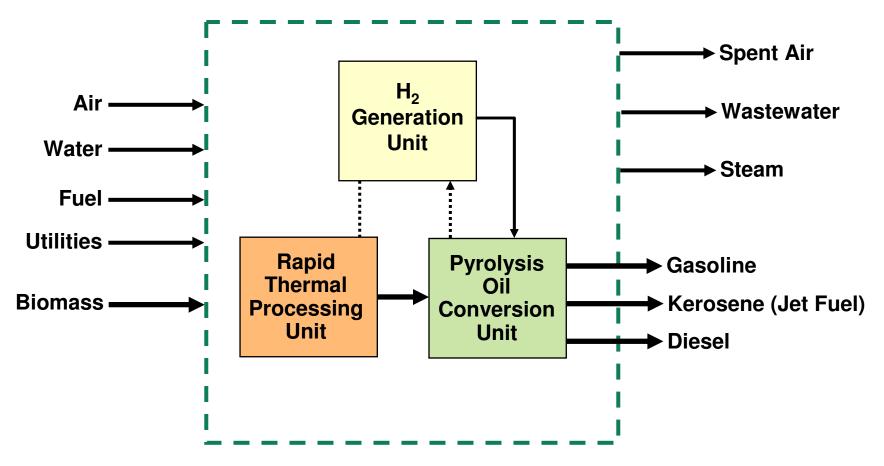
- Co-firing Cases (lowest capital)
 - Fuel Oil Power Plant
 - Coal Power Plant
 - Natural Gas Power Plant


- Advanced Power Facilities (highest efficiency)
 - Gas Turbine Combined Cycle (GTCC) with heat recovery
 - Distributed Diesel Generator located at site
 - Parasitic Electric Power Supply
- Comparison to Direct Biomass Combustion (BC)
 - Dedicated facility at 18% efficiency (existing BC1)
 - Dedicated facility at 25% efficiency (modern BC2)

Comparisons of LC-GHG Emissions with Direct Biomass Combustion (BC)

BC1= existing combustion/steam turbine unit at 18% efficiency BC2= modern combustion/steam turbine at 25% efficiency

Typical Fossil Electricity GHG Values in g/CO₂eq/kWh Coal~1000, Oil ~820, Natural Gas ~550


- Pyrolysis Oil co-firing maximizes use of existing power plant infrastructure
 - No new solids storage or solids handling systems required
 - Avoids issues associated with co-firing solid biomass (e.g. NO_x catalyst fouling, Use of ash as cement additive)
- Enables wider use of biomass in co-firing applications
 - Compatibility with existing NG, Oil, and Coal facilities demonstrated

Reduces GHG produced during biomass transport

- Up to 4 x higher energy density per unit volume shipped
- Future application to high efficiency power generation in distributed stand-alone facilities
 - GTCC or Stationary Diesel Power Generators

Preliminary Configuration for Integrated Bio-Refinery (IBR) Complex

(Py)Gasoline is Primary Product

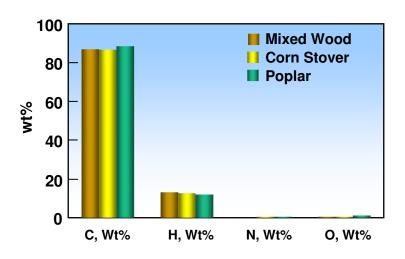
Basis: Bench Scale Production*

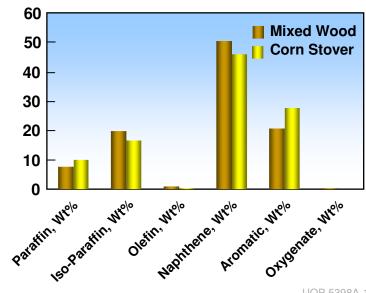
Several Biomass Feeds Processed

- Mixed Wood
- Corn Stover
- Poplar

Liquid Product is a HC mixture of

Gasoline

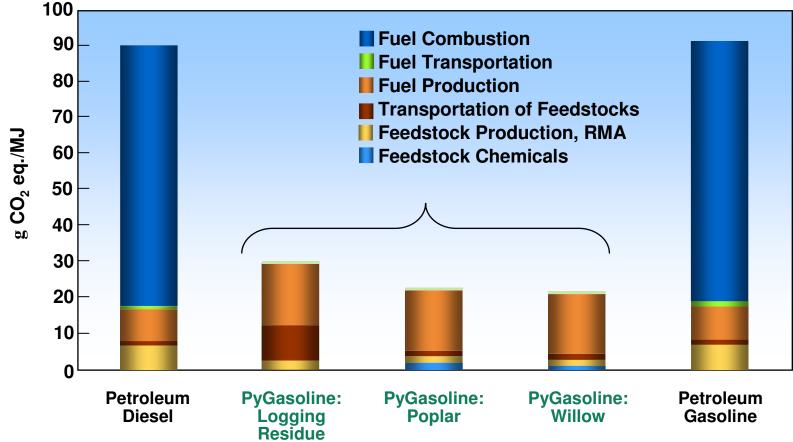

Diesel


- Kerosene
- A CONTRACTOR OF CONTRACTOR OF

Quality similar to Petroleum Fuel

- 99.5+% Hydrocarbon
- LHV ~43 MJ/kg
- 70% Naphthenes & Aromatics
- High Octane Value

* UOP experience in commercial hydroprocessing process scale-up and design



UOP 5398A-17

68-77% Lower WTW GHG Emissions

Energy Allocation for Co-products

Summary

- A variety of biomass feedstocks can be converted to pyrolysis bio-oil using RTP process technology
 - Cost competitive with petroleum fuels
 - GHG emissions are 70-90% lower than fossil alternatives
- Pyrolysis bio-oil can be utilized by a wider spectrum of power generation technologies compared to biomass combustion
 - Biomass combustion: limited to co-firing with coal
 - Pyrolysis bio-oil: compatible with NG, coal, and oil systems
- Greenhouse gas emissions of pyrolysis bio-oil electricity
 - Savings of GHG emissions between 77 99% possible for pyrolysis oil electricity compared to US Grid electricity
 - High efficiency applications for pyrolysis -oil electricity are more favorable compared to direct biomass combustion electricity
- Greenhouse gas emissions of pyrolysis bio-oil transportation fuel
 - Savings of GHG emissions between 68 77% is achieved for pyrolysis oil gasoline compared to petroleum baseline
 - Hydrocarbon based composition is compatible with existing fuel infrastructure. "Blend wall" hurdles not expected to be an issue.

RTP Technology Benefits

Economics

- Economic solution for renewable energy
- Competitive relative to fossil fuels
- Leverages existing assets
- Provides alternate revenue stream

Environment & Social

- Reduction of greenhouse gases and emissions
- Waste disposal
- Minimum environmental Impact
- Agriculture development
- Employment

Pyrolysis to Energy Now – Transport Fuels in 2012

Technical

- Proven application
- Feedstock flexibility
- Minimal net utilities
- Storable product allows decoupling from end user

Energy Security

- Energy diversification
- Reduction of fossil energy requirements

