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Introduction
Coal Fired Power Stations

• Biggest man-made 

CO2 emitters (33%)

• Low efficiency : 
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• Low efficiency : 

40%

This raises concern in terms of both the environment 

and conservation of resources
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Power plant efficiency:
The traditional Approach
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• Power plant design aim at increasing 

ηthermal mostly by increasing TH

• TH is dictated by material resistance

• Currently for power plant

Improvement = High temperature 

resistant material

Little Room for Improvement
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Power plant efficiency: Fundamental Approach

Combustion
C +O2

Heat 

1output O
thermal

H

W T

H T
η

 
= = − ∆  

Power plant 

performance

A more fundamental efficiency

arg

output
Work

t et

W

W
η =

C O2

6

Woutput

QO(TO)

Cold reservoir

Heat 

Engine Target work = Chemical potential 

of process = Gibbs Free Energy 

across the process

1 O

H
Work

T
H

T

G
η

 
∆ − 

 =
∆

Opportunities for significant  Improvement



Chemical processes

From the second law of thermodynamic

For a process to be feasible

∆Gprocess < 0
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Process
Raw material Product

Work

The process has the potential to do work when the 

Gibbs free energy is negative



Chemical processes

Process
Raw material Product

∆Gprocess > 0

For the process to be feasible, we need to supply 

work when the Gibbs free energy is positive
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Process

Work



Chemical processes

Process
Raw material Product

Work

The challenge usually lies on how work

is recovered from the process.
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Work



Chemical processes

Process
Raw material Product

Work Heat
Easy

• We would want to take out work with the 
heat. 

• However when this is not done properly it 
introduces major irreversibility in the 
process
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Reversible Simple Chemical Process
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We can show that
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Unique temperature at 

which maximum work can 

be recovered



Irreversible Chemical Process
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Reversible Simple Chemical Process
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Our ability to 

reach Tcarnot

depends the 

ratio of ∆G and 

∆H



gh-Diagram

Process

Work

Heat

• Adding Heat at an appropriate 
temperature is sufficient to 
satisfy the Work requirement

• Can be feasible and reversible
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Process

Work

Heat

• Can recover Work by 
removing heat at an 
appropriate temperature

• Can be feasible and reversible
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Process

Work

Heat

• Heat cannot satisfy the process 
Work requirement

• With heat only process not 
feasible

• Must use other means to supply
work
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• Cannot recover all the Work 
available by removing heat 

• Can be feasible but not 
reversible huge amount of 
work could be lost

• Must use other means to 
recover work

Process

Work

Heat



Coal combustion as a chemical process

Combustion
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Work will be lost if heat is taken at a feasible temperature
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Reversible Heat Engine

Coal combustion as a chemical process
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Even with a reversible heat engine system, power plants will still 

lose work: about 34%



• The combustion of most carbon based 
compounds is in region 3B where Tcarnot

is negative or in region 3A with high 
Tcarnot

• Hence making it impossible to 
efficiently combust  conventional fuels 
in a single step
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• The only way to approach the target 
work for these processes, is to 
increase the temperature at which 
heat is produced. And this could go 
beyond technological limits
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• In order to improve efficiency with current 
technology one needs to finds chemistries that 
allow approaching the target work at lower 
temperatures

• The IGCC is an attempt to this approach
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• Increasing the temperature at 
which heat is taken from coal 
combustion will improve work 
efficiency. 

• With current technology heat can 
only be taken out via steam at 
620⁰C. 
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• Current technology uses the 
combined cycle which start with 
the highest temperature of about 
1300⁰C

• Therefore we would, ideally, want 

to reach the target work at this 
temperature, by combusting 
appropriate fuels.
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Summary

Work recovered 

[kJ/mol]

Efficiency Products
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Direct Coal 

Combustion

-262.15 0.66 CO2

Gasification

Improved IGCC

-297.29 0.75 CO2, H2O

Ammonia Route 1 -314.58 0.80 CO2, H2O, N2, 

Ammonia Route 2 -301.26 0.76 CO2,H20, HNO3

(Fertilisers)



Conclusion

• The ability of chemical processes to do work lies within 
their chemical potential, rather than in the heat they 
produce. Assessing process efficiency in terms of chemical 
potential could reveal opportunities for more improvement

• Recovering the chemical potential as useful work via heat, 
is the most challenging task for chemical engineers, mostly 
due to technological limitations. This explains inefficiencies 
in coal fired power plants.in coal fired power plants.

• However, certain molecules, such as NH3, are capable of 
more reversible combustion, making it possible to recover 
almost maximum chemical potential, using available 
technology.

• Storing chemical potential from coal in such molecules 
could significantly improve power plant efficiency and 
could in addition produce useful chemicals as by-products.



QUESTIONS?

Thank you
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