Assessment of Strategies Proposed to Reduce CO₂ Emissions

Costas Tsouris, Doug Aaron, Kevin Ye, Andrew Chung, and Kent Williams

Oak Ridge National Laboratory and Georgia Institute of Technology

CO₂ Summit Vail, Colorado, June 9, 2010

Georgialnstitute of Technology

CCS Depends on a Suite of Technologies

- Separation¹
 - Absorption, adsorption, membranes
- Transportation
 - Transportation via pipelines (the most viable option)
- Storage
 - Storage in aquifers, deep ocean, oil fields, coal seams

 CO_2 is captured (a), transported (b) and stored (c)

^{ent} of Energy ¹Aaron and Tsouris, SS&T, 2005

Statoil Sleipner facility: stores CO₂ in an aquifer below the North Sea

CO₂ Ocean Injection at Monterey Bay, CA

Tsouris et al, ES&T, 2004

The Hydrate Reactor was Developed at ORNL

brought to you by 🛣 CORE by Engineering Conferences International

3 Managed by UT-Battelle for the U.S. Department of Energy Tsouris et al, Energy & Fuels, 2007

There are Various Options for CO₂ Geologic Storage

5 Managed by UT-Battelle for the U.S. Department of Energy

COAR RIDGE Printleman

CO₂ Transportation is a Mature Technology

Bielicki, ORNL, 2009

Construction of Green Pipeline, Denbury Resources Baton Rouge, LA. May, 2009.

N.R.

CO₂ Capture is the Biggest Challenge to CCS

The Cost of CO₂ Capture Varies with Capture Efficiency

Expect a significant cost for CO₂ capture and compression

the U.S. Department of Energy

Virtual CCS: A New Concept

- Calculated the resources needed for CCS to stabilize CO₂ emissions
- Used this "pool" of money to build, maintain, operate, and decommission alternative energy installations (Virtual CCS)
- Based calculations on the Pacala and Socolow (2004) eightwedge stabilization triangle

Model Input Data for Comparison of CCS with Wind, Nuclear, and Geothermal Power

• Data taken from the literature determine the scale of CCS and alternative solutions:

CO ₂ emissions in 2010	CO ₂ emissions increase	Cost of CCS ¹
(GT)	(GT/year)	(\$/ton CO ₂)
30	0.64	51

- These data lead to a total, one-wedge cost of \$5.1 trillion over a period of 50 years
- Cost and revenue data for wind and nuclear energy:

Geothermal installed cost	Geothermal revenue	Nuclear installed cost ²	Nuclear revenue	Wind installed cost	Wind revenue	
(\$/kW)	(\$/kW-yr)	(\$/kW)	(\$/kW-yr)	(\$/kW)	(\$/kW-yr)	
2778	438	5046	433	5700	390	
10 Managed by UT-Battelle for the U.S. Department o	Managed by UT-Battelle for the U.S. Department of Energy 1 PCC Report 2 Waste disposal cost included					

Additional Data Used in the Model

- Capacity factor affects role of renewable energy:
 - Capacity factor:
 - 90% for nuclear baseload
 - 90% for geothermal baseload
 - 30% for wind peak
 - Nuclear and geothermal are easily integrated to the current grid system
- Following the scenario of Pacala and Socolow:
 - Assume CCS lasts from 2010 to 2060 (50 years)
 - Goal is to stabilize CO_2 emissions at 2010 level, thus avoiding all increased emissions

Wind and Nuclear Power Avoid More Carbon Dioxide Emissions than CCS

- For a 25-year lifetime, windmills avoid 1.9 times more CO₂ than CCS per dollar in overall investment (capital plus operation).
- For a 50-year lifetime, nuclear power plants can avoid 4.3 times more CO₂ than CCS per dollar in overall investment (capital plus operation).

Alternative Energy Generates Revenue

Virtual CCS Can Help Reduce CO₂ Emissions More Effectively than CCS

Comparison of CCS and Alternative Energy Shows Alternatives are Better Options

CO₂ avoidance and revenue for a \$5.1 trillion investment (1 wedge*)

Technology	Carbon avoidance ratio	Revenue (\$)
CCS	1	-
Wind	1.91	9.1 T
Nuclear	4.31	22 T
Geothermal	4.50	27 T

*1 wedge = 100 GtCO₂ avoided over 50 years

```
14 Managed by UT-Battelle
for the U.S. Department of Ener
```

We Can More Effectively Stabilize the CO₂ Concentration in the Atmosphere by:

- Continuing CCS applications that generate revenue (i.e., EOR)
- Ranking carbon avoidance strategies based on effectiveness ratio over CCS and economic performance
- Pursuing <u>virtual CCS</u>, starting from the most promising energy strategies based on ranking
 - Investing resources planned for CCS into low-CO₂ energy technologies
 - Investing in both baseload and peak energy technologies

Virtual CCS is a more sustainable approach because it reduces carbon emissions more effectively and economically than CCS.