

Net Energy and Greenhouse Gas Emissions Evaluation of Biodiesel Derived from Microalgae

Liaw Batan, Jason Quinn, Thomas Bradley and Bryan Willson

CO2 Summit: Technology and Opportunity

June 8, 2010 Vail, CO

Acknowledgement

We gratefully acknowledge financial support provided by

-Solix Biofuels, Inc

-Colorado Center for Biorefining and Biofuels.

Overview

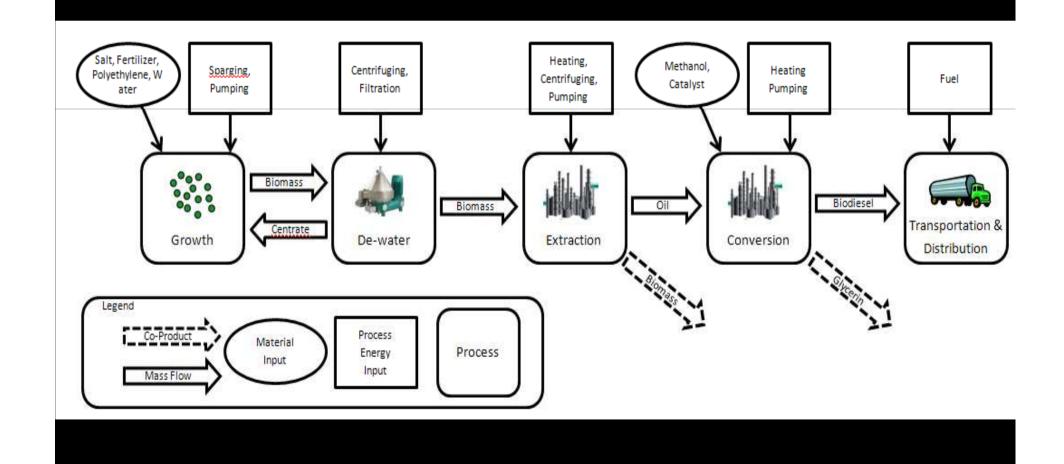
- Advantages and Disadvantages of Algae
- Goals and Scope
- Assessment
- Model
- Results and Conclusions
- Future Works

Advantages of Algae

- Photosynthetic efficiency (6-20%) vs. terrestrial (0.5-2%)
- Lipid production (5,000 gal/acre) vs. soybean oil yield (4,600 gal/acre)
- Water-borne that allows ready access to nutrients and concentrated CO₂
- Low environmental requirements
 - Broad range of water salinity
 - Low quality land for culture

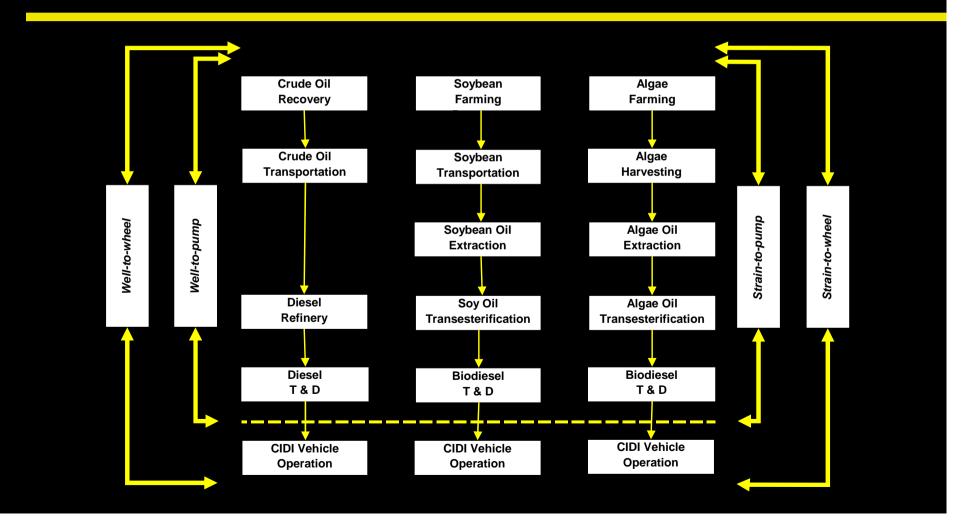
Disadvantages of Algae

- -A built environment to support algae culture
- -Initial capital investment
- -Maintenance and material costs
- -Energy use
- -Water use
- -Fertilizer use



Goals

- Assessment of algae-to-biofuel process for information and data gaps
- -Potential modes of algae LCA improvement
- Life-cycle comparison to other transportation fuels - petroleum diesel and soy-based biodiesel
- -Scalability assessment



Microalgae process & LCA overview

Scope – Strain-to-Pump

Assessment

- Functional unit: unit of energy output per cycle
- Primary metrics:
 - Net Energy Ratio (NER): energy consumed per energy produced
 - GHG emissions: computation of CO_2 , CH_4 and N_2O
 - Scalability of Inputs and Products: based on
 40 billion gallons of biofuel per year (US DOE 2030 goal)

Assessment

- Material: Argonne National Laboratory (ANL) GREET model
 - Lifecycle model for transportation fuel (database of U.S. average conditions)
 - Modifications made to simulate energy and material inventories of algae-to-biodiesel process

Assessment

Study assumptions

- No capital energy expenditures
- No thermal regulation energy (location/season)
- No transportation for CO₂-to-plant, feedstock-tointermediate-storage
- Co-product credits
 - Displacement method
 - Energy- and Market-value allocation methods

Model

(1) Detailed engineering model for stages

- Integration and validation of process through literature and pilot plant
- Growth, dewater and extraction modeling and data collection
 - Process material & energy inputs and outputs
 - Growth rate of 25 g.m⁻².day⁻¹ and oil content of 50% w/w
- Industrial scale (315 ha)
- Nannochloropsis sp

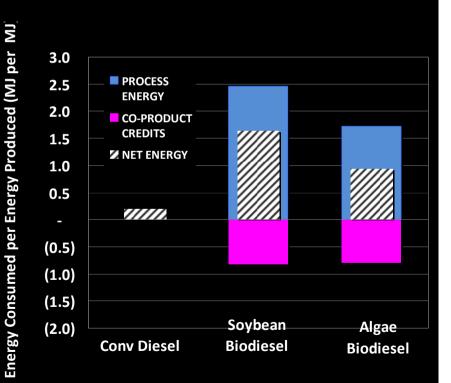
Model

(2) GREET for generic model for oil conversion, transportation & distribution (U.S. average conditions)

- Petroleum diesel and soybean-based biodiesel
- Upstream material energy and emission data
- Conversion and emission data

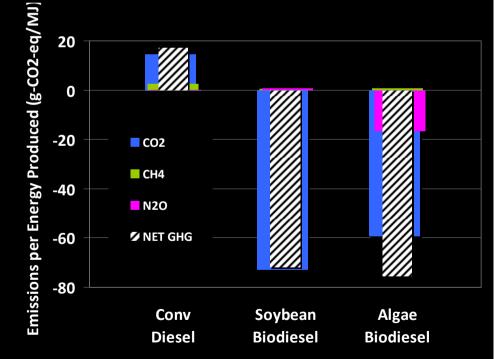
(3) Modified model of GREET for assessment of lifecycle NER and GHG emissions

 Salt (media): energy and GHG emissions from literature

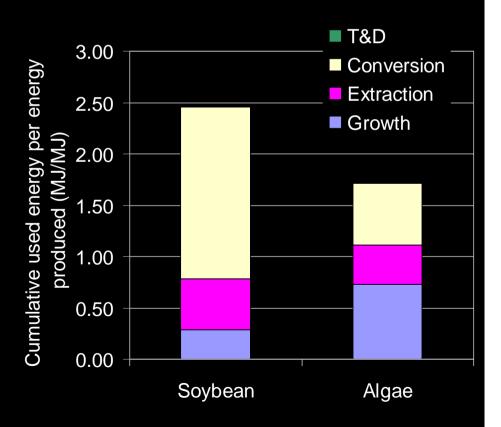

Results – Process

STAGE/Inputs	VALUE	UNITS
GROWTH STAGE		
Photosynthetic area per facility area	0.80	ha/ha
Salt consumption	134	g/kg dry algae
Nitrogen fertilizer consumption	147	g/kg dry algae
Phosphorus fertilizer consumption	20	g/kg dry algae
Polyethylene consumption	1.17	m³/ha
Diesel fuel consumption	10	L/ha
Electricity consumption	41,404	kWh/ha
Algae biomass yield	91,000	kg/ha
DEWATER STAGE		
Electricity use	30,788	kWh/ha
EXTRACTION STAGE		
Natural gas consumption	141,994	MJ/ha
Electricity consumption	12,706	kWh/ha
Extracted oil yield	43,009	L/ha
CONVERSION STAGE		
Natural Gas consumption	2.10	MJ/kg biodiesel
Electricity consumption	0.03	kWh/kg biodiesel
Methanol consumption	0.10	g/kg biodiesel
Sodium hydroxide consumption	0.005	g/kg biodiesel
Sodium methoxide consumption	0.0125	g/kg biodiesel
Hydrochloric acid consumption	0.0071	g/kg biodiesel
TRANSPORTATION & DISTRIBUTION		
Diesel consumption	0.0094	L/kg biodiesel

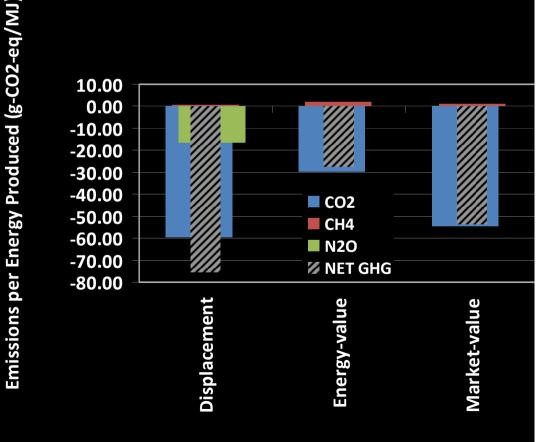
Results – Net Energy Ratio

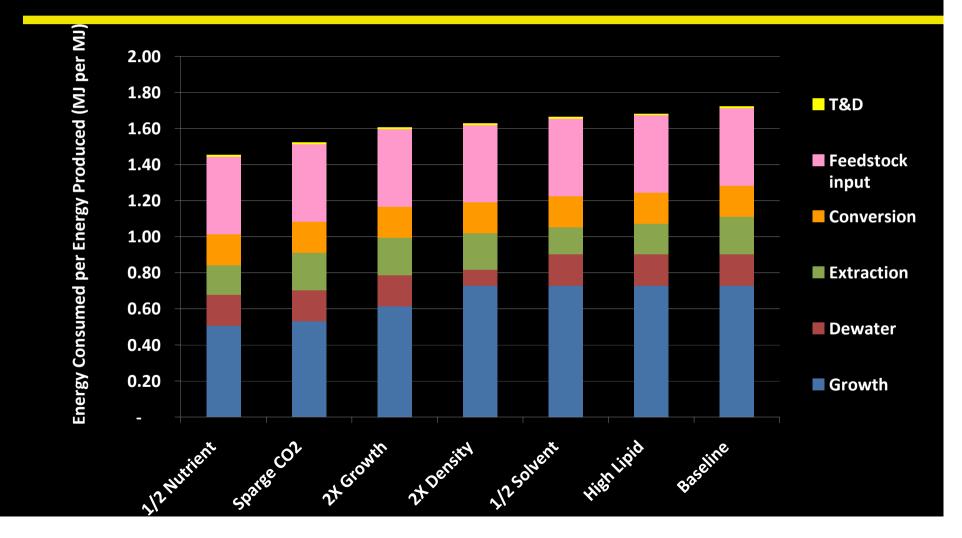

Stage	Conventional Diesel	Soybean Biodiesel	Microalgae Biodiesel
Crude oil recovery*	0.053	-	-
Growth*	-	0.32	0.73
Dewater*	-	-	0.17
Oil extraction*	-	0.46	0.21
Fuel conversion*	0.13	0.17	0.17
Feedstock input*	-	1.50	0.43
Transportation & Distribution*	1.8E-7	0.01	0.01
Co-product credits*	-	(0.83)	(0.79)
Total NER**	0.19	1.64	0.93

Results – GHG Emissions


	Conventional Diesel	Soybean Biodiesel	Microalgae Biodiesel
CO ₂ (g/MJ)	14.69	-72.73	-59.49
CH ₄ (g/MJ)	2.48	0.42	0.74
N ₂ O (g/MJ)	0.07	0.58	-16.54
Net "strain to pump" GHG (gCO ₂ . eq/MJ)	17.24	-71.73	-75.29

Results – LC Cumulative Energy


- Growth stage: 0.73 MJ/MJ (42% of algae LC cumulative energy) compared to 0.29 MJ/MJ (12% of soybean LC cumulative energy)
- Electricity: 36% of LC process energy consumption
- **N-based fertilizer**: 26% of LC cumulative energy


Co-Product Credits

- Mass Displacement
 - Ratio of protein displacement: 1.3
 - Before oil extraction: 29%
 - After oil extraction: 36.7%
- Energy-value Allocation
 -Algae extract as co-firing material in power plant
- Market-value Allocation
- Algae extract as fish feed at \$1.87/Kg

Results – Process Sensitivity

Scalability Analysis

Scalability analysis was performed to produce algae biodiesel to meet 18% of U.S. Transportation needs (EIA 2009)

• 151 billion cubic meters/yr of algae biodiesel

Results - Scalability

METRIC	PROJECTED REQUIREMENT	NOTES
Land Required	4.41x10 ⁶ ha	16% of Colorado Land Area
		(0.45% of US Land Area)
		(U.S. Census Bureau 2009)
CO ₂	0.47×40^{11} km/sm	32% of CO ₂ from US Power
Consumption	8.17 x10 ¹¹ kg/yr	Generation (EIA 2007)
Natural Gas		2% of US production (EIA
1.39 x10 ¹¹ kWh/yr Consumption	2009)	

Results - Scalability

METRIC	PROJECTED REQUIREMENT	NOTES
Electricity Consumption	2.77 x10 ¹¹ kWh/yr	7%of US production (EIA 2007)
Algae Extract Co- Product Production	6.3x10 ⁸ kg/yr	11% of NOAA U.S. Aquaculture
		Outlook for 2025 (Kim et al
		1992; U.S. Dept Commerce
		2009)
		Sea water and brackish water
Water Consumption 5.07 x10 ⁹ m ³ /yr	n 5.07 x10 ⁹ m³/yr	are usable. It'll depend on local
		water sources

Results - Scalability

METRIC	PROJECTED REQUIREMENT	NOTES
Nitrogen Consumption	4.71 x10 ⁷ ton/yr	1900% of US urea production (U.S. Census Bureau 2009)
Glycerin Co- product Production	2.1 x10 ⁷ ton/yr	7500% of North American production (EIA 2007)

Conclusions

Algae biodiesel has strong potential as alternative to 1st generation biofuels:

- Robust net GHG reduction: 75.3 gCO_{2-eq} / MJ produced
- Marginal yet positive benefit in terms of NER: 0.93 MJ used/MJ produced
- No competition for quality land
- Future/potential developments
 - Sensitivity to co-product allocation
- Downside:
 - High use of Nitrogen based fertilizer
 - Competition for water (maybe)
 - Low sensitivity to process variability

Future works

- Assessment of capital energy in the LCA
- Development of alternative Nitrogen sources (reuse/recycle, wastewater)
- Development of market use/value for algae coproducts (animal feed, co-firing material)
- Evaluation of land use change (d/i)
- Additional work for sustainability study:
 - Water footprint

THANKS FOR YOUR ATTENTION!