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Motivation

Source: Energy Information Administration, 2005Source: Energy Information Administration, 2005

• Reduce CO2 capture costs

• Flue gas units will dwarf acid gas treaters

• Precise sizing requires accurate mass transfer data

• No existing data for aged solvents

• Packing requires rate-based modeling

• Significant energy savings in the regenerator
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Aqueous Amine Absorption
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Capture Costs

CapEx OpEx
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Wetted-Wall Column
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• Gas-liquid contactor  

• Well defined surface area
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Mass Transfer with Chemical Reaction
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Experimental Technique
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Gas Film Calibration and Benchmark
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30 wt% MEA, 0.351 loading 30 wt% MEA, 0.496 loading 14 wt% PZ, 0.352 loading

COP 1.8 x 10
-6

 ± 6.6 x 10
-8

4.1 x 10
-7

 ± 7.6 x 10
-8

1.2 x 10
-6

 ± 1.1 x 10
-6

Published
*

1.7 x 10
-6

3.8 x 10
-7

1.4 x 10
-6

kl (mol/sm
2
Pa)

*Dugas, R., G. Rochelle, “Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine,” Energy Procedia, 1163-1169, 2009. 
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Aged Solvents

• Most designs based on fresh solvents

• Effect of degradation components unknown

kl fresh (mol/s m
2
 Pa) kl aged (mol/s m

2
 Pa)

3.7 x 10
-6

3.1 x 10
-6
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Modeling Results

• Non-equilibrium, Aspen Hysys model

• Model compares favorably to literature (30 

wt.% MEA)
COP Published

*

CO2 Capture (%) 90.1 90.1

Regen. Energy (MJ/kg CO2) 13.8 15.9

Solvent Circulation (L/s) 2638.9 2639.4

Absorber Packing Height (m) 15.0 15.0

Regenerator Packing Height (m) 10.0 10.0

Lean CO2 Loading (mol CO2/mol alk.) 0.28 0.25

Rich CO2 Loading (mol CO2/mol alk.) 0.48 0.46

*Fisher, K.S., G. Rochelle, “Integrating MEA Regeneration with CO2 Compression and Peaking to Reduce CO2 Capture Costs,” DOE/NETL report, 2005.
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Conclusions and Future Work

• Accurate experimental data required for proper 

design of CO2 capture systems

• Kinetic information of aged systems needed to 

predict real performance

• Incorporate kinetic data into rate-based models
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Questions?


