ConocoPhillips

Aqueous Amine Absorption: Experimentation and Modeling

Clint P. Aichele, George Schuette, Stephanie Compton, Prakash Karpe, and Randy Heald ConocoPhillips Company

Motivation

Source: Energy Information Administration, 2005

- Reduce CO₂ capture costs
- Flue gas units will dwarf acid gas treaters
- Precise sizing requires accurate mass transfer data
- No existing data for aged solvents
- Packing requires rate-based modeling
- Significant energy savings in the regenerator

2

Aqueous Amine Absorption

3

ConocoPhillips

Capture Costs

Wetted-Wall Column

Mass Transfer with Chemical Reaction

Experimental Technique

Gas Film Calibration and Benchmark

^{*}Dugas, R., G. Rochelle, "Absorption and desorption rates of carbon dioxide with monoethanolamine and piperazine," *Energy Procedia*, 1163-1169, 2009.

- Most designs based on fresh solvents
- Effect of degradation components unknown

 k_l fresh (mol/s m² Pa) k_l aged (mol/s m² Pa) 3.7×10^{-6} 3.1×10^{-6}

Modeling Results

• Non-equilibrium, Aspen Hysys model

 Model compares favorably to literature (30 wt.% MEA)

		i upiisiicu
CO ₂ Capture (%)	90.1	90.1
Regen. Energy (MJ/kg CO ₂)	13.8	15.9
Solvent Circulation (L/s)	2638.9	2639.4
Absorber Packing Height (m)	15.0	15.0
Regenerator Packing Height (m)	10.0	10.0
Lean CO ₂ Loading (mol CO ₂ /mol alk.)	0.28	0.25
Rich CO ₂ Loading (mol CO ₂ /mol alk.)	0.48	0.46

Conclusions and Future Work

- Accurate experimental data required for proper design of CO₂ capture systems
- Kinetic information of aged systems needed to predict real performance
- Incorporate kinetic data into rate-based models

11

Acknowledgements

- Luminant Carbon Management Program
- Scott McArthur (COP)
- Jim Finley and Dennis Sprague

Questions?

