CO2 Summit: Technology and Opportunity Vail, Colorado, June 6-10, 2010

### Thermodynamic Analysis of an Oxy-Combustion Process for Coal-Fired Power Plants with CO2 Capture

Fu Chao, Truls Gundersen

Department of Energy and Process Engineering Norwegian University of Science and Technology - NTNU Trondheim, Norway CORE

## **Outline of the Presentation**

- Motivation
- Power Plant
- Exergy Analysis
- Efficiency Improvements
- Conclusions



Motivation

### **Energy Related CO2 Emissions**



World marketed energy use\*

World energy related CO2 emissions\*

- Coal becomes a more important energy source in the future
- Coal related CO2 emission represents an increasingly larger part
- Carbon Capture & Storage (CCS) :

an important way to mitigate man-made CO2 emissions

\*Reference: EIA, International Energy Outlook 2008

-4-

#### **BIGCCS: International CCS Research Centre (Trondheim, Norway)**







- 400 mill NOK (65 mill USD) total in 8 years (2009-2016)
- 18 PhDs / 8 Post.docs (Coordinator: NTNU)
- 9 Industrial Partners
- 8 Research Institutes, 3 Universities
- Host Institution: SINTEF Energy Research



## Ways to Capture CO2



-6-

# Why Oxy-Combustion for Coal based Power Plants?

- The reduction in power efficiency due to CO2 capture is less than for natural gas based power plants
- The increment of investment cost is less
- $\Rightarrow$  A promising route to CO2 capture
- Opportunities for co-capture of SOx and NOx
- For Natural Gas: Oxy-combustion gas turbines represent a challenge

#### **CCS** and **LCA**



#### LCA of NGCC with post-combustion CCS

#### Notice: 90% CO2 capture = 64% reduction in GWP

Reference: Singh B., Strømman A. H., Hertwich E., 2010, Int. JI. of Greenhouse Gas Control, in Press



NTNU

### **Changes in Impact Potentials**

| Impacts                      |   | Coal                         |                             |                      | Natural gas                  |                             |                      |
|------------------------------|---|------------------------------|-----------------------------|----------------------|------------------------------|-----------------------------|----------------------|
|                              |   | Post-combustion <sup>a</sup> | Pre-combustion <sup>b</sup> | Oxyfuel <sup>a</sup> | Post-combustion <sup>a</sup> | Pre-combustion <sup>b</sup> | Oxyfuel <sup>a</sup> |
| Global warming               | % | -74                          | -78                         | -76                  | -68                          | -64                         | -73                  |
| Terrestrial acidification    | % | -13                          | 20                          | 13                   | 26                           | 20                          | 2                    |
| freshwater eutrophication    | % | 136                          | 120                         | 59                   | 200                          | 94                          | 111                  |
| marine eutrophication        | % | 43                           | 20                          | 1                    | 30                           | 18                          | -15                  |
| Photochemical oxidation      | % | 27                           | 20                          | -1                   | 17                           | 18                          | -8                   |
| particulate matter formation | % | -7                           | 8                           | 12                   | 23                           | 21                          | 2                    |
| human toxicity               | % | 51                           | 40                          | 38                   | 74                           | 62                          | 73                   |
| terrestrial ecotoxicity      | % | 114                          | 58                          | 67                   | 76                           | 76                          | 77                   |
| Fresh water ecotox.          | % | 205                          | 60                          | 46                   | 413                          | 90                          | 103                  |
| Marine ecotoxicity           | % | 88                           | 80                          | 57                   | 66                           | 50                          | 63                   |

Notice: FEP, METP, POFP, FETP, METP are considerably less for oxy-combustion than for pre- and post- combustion, in particular for coal-fired power plants

> Reference: Singh B., Strømman A. H., Hertwich E., 2010, Int. Jl. of Greenhouse Gas Control, Submitted.



**Power Plant** 

#### A Supercritical Oxy-Combustion Pulverized Coal Power Plant







#### **Exergy Flows in the Power Cycle**



#### **Distribution of Exergy Losses in the Power Cycle**



NTNU

-13-

combustor

- steam generation & reheat process
- □ MP & LP turbines

other losses

#### **Exergy Flows in the ASU**



#### Distribution of Exergy Losses in the ASU



NTNU

-14-

- main air compressor
- pre-purification unit
- main heat exchanger
- double distillation column
- other losses

#### **Exergy Flows in the CPU**



#### **Distribution of Exergy Losses in the CPU**



NTNU

#### **Exergy Flows in the Entire Process**



Net power output: 571,115 kW

Net power efficiency with CO2 capture: 30.4% (HHV)

NTNU



#### **Penalty Related to CO2 Capture**

- Net power efficiency without CO2 capture: 40.6% (HHV)
- Efficiency penalty: 10.2% points
  - caused by ASU: 6.6% points
  - caused by CPU: 3.6% points
- Theoretical efficiency penalty: 3.4% points
  - caused by ASU: 1.4% points
  - caused by CPU: 2.0% points

The ASU has the largest Potential for Improvement



## **Efficiency Improvements**

#### **Effects of Compressor Efficiencies**



If the isentropic efficiencies of all compressors increase from 0.74 to 0.90:

- the net power output increases from 549,024 kW to 589,243 kW
- the net power efficiency increases from 29.2 to 31.4% points

-19-

#### **Effects of CO2 Recovery Rate**

|                                          | Base<br>Case | Case 1  | Case 2  | Case 3  | Case 4  |
|------------------------------------------|--------------|---------|---------|---------|---------|
| Operating pressure [bar]                 | 32           | 25      | 20      | 18      | 15      |
| CO <sub>2</sub> recovery rate [%]        | 95.1         | 93.3    | 91.5    | 90.2    | 86.9    |
| Purity of capture CO <sub>2</sub> [mol%] | 96.2         | 97.2    | 97.0    | 97.4    | 98.0    |
| Power used in the CPU [kW]               | 68,383       | 66,902  | 63,4670 | 63,767  | 60,699  |
| Net power output [kW]                    | 571,115      | 572,597 | 576,029 | 575,731 | 578,799 |
| Net power efficiency [%]                 | 30.4         | 30.5    | 30.7    | 30.6    | 30.8    |

The net power efficiency increases from 30.4 to 30.7% points

if the CO2 recovery rate is reduced from 95.1% to 91.5%

#### **Integration between ASU & CPU**



Conclusions





## In Conclusion

- Oxy-combustion is more promising for coal-fired power plants than for natural gas based power plants
- The power efficiency penalty for CO2 capture is 10.2% points, while the theoretical penalty is 3.4% points
- The ASU and the CPU contribute 6.6% points and 3.6% points respectively
- The penalty can be mitigated by:
  - 1) Improving the performance of compressors
  - 2) Optimizing the CO2 recovery rate
  - 3) Heat integration between the ASU & the CPU

## **Thank You!**

chao.fu@ntnu.no

