

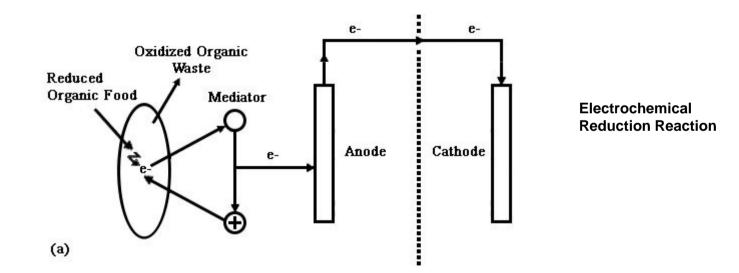
PHOTOSYNTHETIC – FERMENTATIVE FUEL CELL USED IN A BIOFUEL PROCESSING FACILITY

<u>E.E. Powell</u>, G.A. Hill, R.W. Evitts, and J.C. Bolster Bioenergy II Conference, Rio de Janeiro, Brazil June 8-13, 2009

Outline

- Describe microbial fuel cell (MFC)
- Novel photosynthetic cathode
- Coupled MFC apparatus
- Experimental results
- Conclusions coupled MFC study
- Integrated bioethanol-biodiesel facility design
- Future work

Microbial Fuel Cell (MFC)


- Electrochemical energy conversion device
 - Battery vs. fuel cell
- Microbial fuel cell
 - Oxidation reduction reactions within living microorganisms
 - Metabolism of glucose:

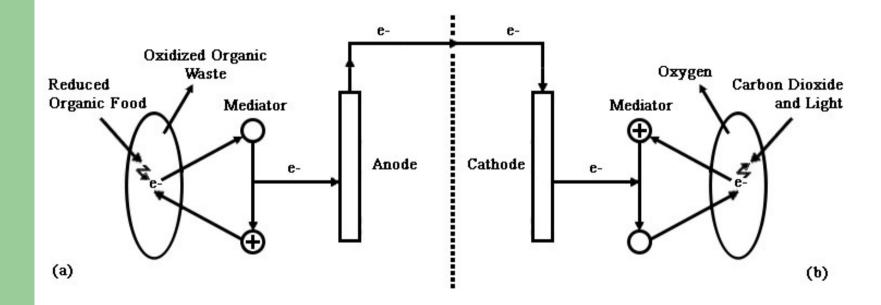
 $C_6H_{12}O_6 + 6H_2O + 6O_2 \longrightarrow 6CO_2 + 12H_2O + +24e^-$

Anodic MFCs

- Diverse range of designs, species, organic substrates

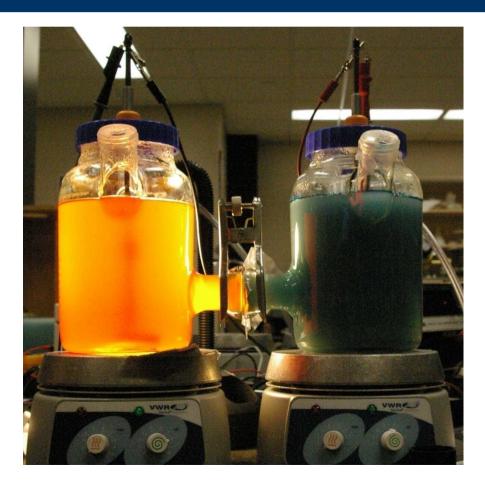
Electron Flow in Anodic MFC

Schematic of Electron Flow in the Completely Biological MFC: (a) anodic release of electrons by consuming organic compounds


Recent Work – Cathodic MFC

- Photosynthetic microbial culture as biological electron acceptor
 - Microalgae Chlorella vulgaris

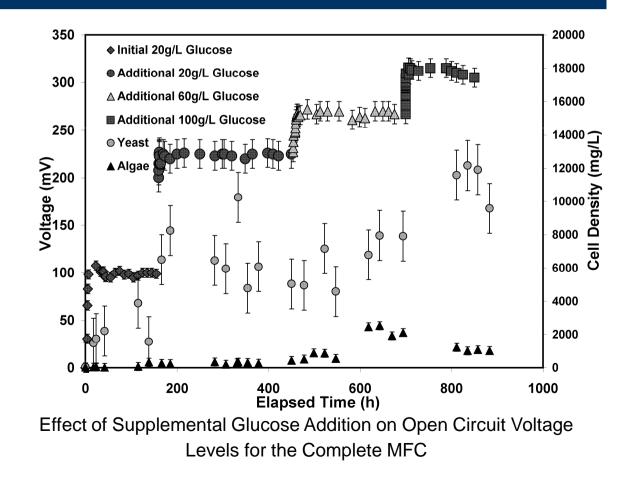
 $6CO_2 + 12H^+ + 12e^- \longrightarrow -C_6H_{12}O_6$ -(biomass) + $3O_2$


• Working cathodic microbial half cell

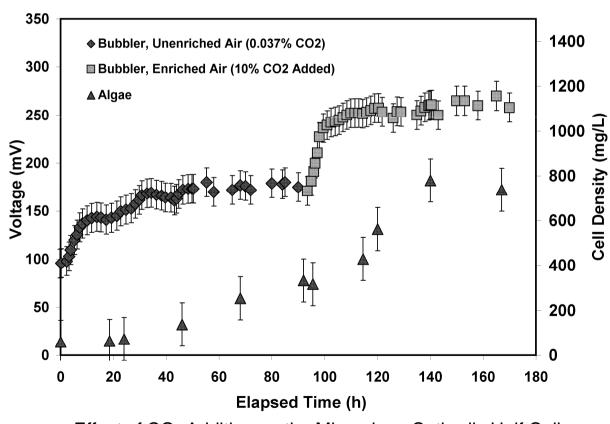
Electron Flow in Coupled MFC

Schematic of Electron Flow in the Completely Biological MFC: (a) anodic release of electrons by consuming organic compounds, (b) cathodic capture of electrons by photosynthetic growth on CO_2

Coupled MFC in Operation


MFC Confirmation and Loading Effects

- Blank run
- Calomel reference electrode
- Maximum power density 0.95 mW/m² at 90 mV and 5000 Ω
- Current flows up to 40 µA


Production of Biomass and Ethanol

- Average Biomass
 - 300 mg/ L C. vulgaris
 - 3025 mg/L S. cerevisiae
- Valuable Fuel Cell By-products
 - C. vulgaris
 - Biomass, Oil for Biodiesel
 - S. cerevisiae
 - Ethanol
 - 5% (vol)

Supplemental Glucose Addition

Carbon Dioxide Enrichment of Feed Air

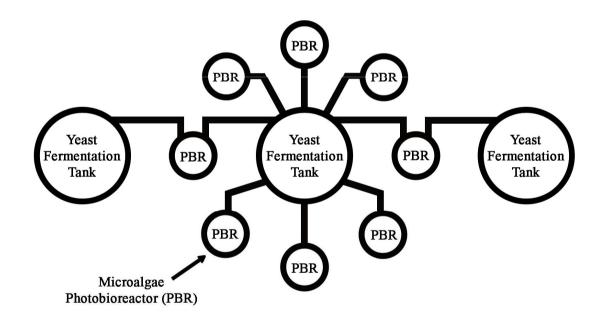
Effect of CO₂ Addition on the Microalgae Cathodic Half Cell

Conclusions – Coupled MFC Study

- Completely biological MFC using novel photosynthetic cathode is feasible
- Maximum power density was 0.95 mW/m² at 90 mV and 5000 Ω
- Feeding increases output
- Glucose renews a drained MFC
- CO₂ neutral technology
- Valuable by-products

Novel Photobioreactor (PBR)

- For C. vulgaris cultivation
 - Airlift loop design
 - Increased biomass productivity
 - Improved light penetration
- Presently testing experimentally


MFCs in Integrated Bioethanol-Biodiesel Plant

- Existing 130 x 10⁶ L/year bioethanol plant
 - Existing yeast fermentors used as <u>anodic half</u> <u>cells</u>
 - 15 of 23 fermentors (1.5 x 10⁴ m³ volume) are working at any one time
- Novel airlift photobioreactor (PBR)
 - Improved C. vulgaris cultivation
 - Used as cathodic half cells
 - CO₂ from yeast fermentors
 - Light from sunlight

Integrated Bioethanol-Biodiesel Plant Design

- Design method for economic feasibility:
 - Capital and operating costs, revenue from algae oil (biodiesel) and power generation, value of CO₂ emission recovery (carbon credits), taxation, depreciation, loan repayment
- Maximize Net Present Worth (NPW)
- Total number and column dimensions of PBRs (cathodes)
 - Each PBR creates a coupled MFC

Schematic of Bioreactors and Connections in Integrated Plant

Multiple PBRs surrounding a single existing fermentation tank. Connections are required to multiple fermentors.

Optimum Design

- PBR cathode dimensions:
 - 50 m height,1 m diameter
 - 39.3 m³ volume
- Total number of PBRs in plant: 50
 - 3 or 4 cathodes connected to each fermentor anode
 - 50 MFCs
- NPW: \$28.2 x 10⁶
- 100% CO₂ consumption

Effect of Design Parameters on NPW

- Minimum number of PBRs (MFCs) → 21
 (optimum 50 m height, 1 m diameter)
- Maximum number of PBRs (MFCs)→ 50
 - insufficient CO₂ available
- Combination: short column, small diameter
 negative NPW
- Revenue streams offset costs
 - Electrical power, algae oil (biodiesel), CO₂ removal (carbon credits)

- Finish testing of novel airlift PBR
- Experimental testing of PBR as cathodic half cell
 - Coupled to electrochemical anodic half cell
 - Coupled to a yeast anodic half cell

Acknowledgements

- Natural Sciences and Engineering Research Council of Canada (NSERC)
- Department of Chemical Engineering, University of Saskatchewan
- Majak Mapiour
- Divya Sasi

QUESTIONS?