Comparison of Laboratory and Industrial Saccharomyces cerevisiae Strains for Their Inhibitor Resistance and Xylose Utilization

Geng Anli*, Wang Zhankun, Lai Kok Soon and Tan Wei Yi Mark, Goh Kiow Leng Hedy, New Jen Yan

School of Life Sciences and Chemical Technology, Ngee Ann Polytechnic, Singapore

Overview

- Lignocellulosic ethanol process
- Biocatalysts development at Ngee Ann Polytechnic
- Inhibition and stresses studies
 - S. cerevisiae strains
 - Inhibitor resistance
 - Stress tolerance
 - Xylose utilization

Lignocellulosic Biomass Composition

- Cellulose
 - Very high molecular weight
 - Highly crystalline
 - Uniform polymer of glucose
- Hemicellulose
 - Non-homogeneous
 - Non-crystalline
 - Short branches
 - Polymers of C5, C6 sugars
- Lignin
 - Aromatic
 - Complex structure
- Extractives
 - Low molecular weight
 - Mostly lipophilic

Crops and Lignocellulose

1. Crops

2. Lignocellulose

E.

G

Biomass to Fuel Ethanol

Consolidated processing, i.e. hydrolysis and fermentation in one step, for fuel ethanol production from biomass could make this process more economically feasible

Our Focuses

High-strength enzyme cocktails

- Celluase
- Hemicellulase
- Pectinase
- Peroxidases etc.

Robust
ethanologens

- Cofermentation of glucose and xylose
- Inhibitor resistant
- Temperature tolerant
- Ethanol tolerant

Our Approaches

Our People

Our People

Objectives

- Comparison of lab and industrial Saccharomyces Cerevisiae strains on
 - Inhibitor resistance
 - Stress tolerance
 - Xylose utilization

Biomass Hydrolysate Fermentation

Sugar mixture

- Hexose
 - Glucose
 - Galactose
 - Mannose
- Pentose
 - Xylose
 - arabinose

Stresses

- pH
- Ethanol
- Xylose
- Temperature

Inhibitors

- Furans
- Weak acids
- Phenolics

Robust Ethanologens

- Inhibitor resistance
- Stress tolerance
- Sugar mixture utilization

Yeast Saccharomyces cerevisiae •More resistant to inhibitors •More tolerant to stresses such as ethanol, low pH and high temperature

Saccharomyces Cerevisiae strains

- Laboratory strains
 - ATCC 44771 (haploid)
 - CBS 8066 (diploid) xyluloseutilizing
- Industrial strains
 - ATCC 24860 (diploid) xyluloseutilizing
 - ATCC 96581 (polyploid)
 - ATCC 4126 (polyploid)
 - TJU (polyploid)

Inhibitor Cocktail

The 100% (v/v) inhibitor stock cocktail

- -75 mM formic acid (Sigma-Aldrich),
- -75 mM acetic acid (Merck)
- 30 mM furfural (Sigma-Aldrich)
- 30 mM 5-hydroxymethyl-2-furaldehyde (HMF) (Sigma–Aldrich).

Stresses

- pH
- Ethanol concentration
- Xylose
- Temperature

Inhibitor Resistance

- ATCC 24860 and ATCC 96581 demonstrated the highest resistance
- ATCC 44771 and CBS 8066 demonstrated the lowest resistance
- TJU and ATCC 4126 growth were sensitive to inhibitor concentration

pH Tolerance

- pH below 4, all strains showed less growth and the optimal pH is 5
- ATCC 44771 showed the least tolerance to the lower pH followed by CBS 8066
- Strains TJU and ATCC 24860 demonstrated the highest tolerance to the lower pH

Ethanol Tolerance

- Strains TJU and ATCC 24860 demonstrated the highest tolerance to ethanol
- ATCC 44771 showed the lowest ethanol tolerance followed by CBS 8066
- ATCC 4126 and ATCC 96581 demonstrated similar moderate ethanol tolerance

Xylose Tolerance

- When xylose concentration is greater than 20g/L, all strains showed significant drop in cell density
- ATCC 96581 demonstrated the highest xylose tolerance
- ATCC 4126 showed the lowest xylose tolerance followed by strain TJU

Temperature Tolerance

- All strains died off at 50°C.
- ATCC 24860 and ATCC 96581 demonstrated moderate tolerance to temperature increase
- ATCC 4126 and Strain TJU were quite sensitive to temperature change

Summary

١.

	Inhibitor	рН	Ethanol	Xylose	Temperature
TJU	+	++	++	-	-
ATCC 4126	+	+	+		-
ATCC 24860	++	++	++	+	+
ATCC 96581	++	+	+	++	+
CBS 8066	-	-	-	-	+
ATCC 44771				-	++

Xylose Utilization

- Random mutagenesis by UV irradiation and ethyl methanesulfonate (EMS) and directed evolution
- Except ATCC 44771, the rest strains can all grow on xylose aerobically
- No growth was observed under anaerobic conditions

Conclusion

- ATCC 24860 and ATCC 96581 are the best candidate strains for further improvement
 - Sugar mixture utilization
 - Inhibitor resistance and stress tolerance
 - Biomass hydrolysis

Thank You

