

# Fast Pyrolysis of Biomass Under Gasification Conditions:



Influence of Particle Size, Reactor Temperature and Gas Phase Reactions

#### Li CHEN<sup>1</sup>, Capucine DUPONT<sup>1</sup>, Sylvain SALVADOR<sup>2</sup>, Guillaume BOISSONNET<sup>1</sup>, Daniel SCHWEICH<sup>3</sup>

- 1. Commissariat à l'Énergie Atomique (CEA), France
- 2. École des Mines d'Albi-Carmaux, France
- 3. École Supérieure Chimie Physique et Électronique de Lyon, France





# The gasification



# **Research on fast pyrolysis**



ECOLE DES MINES D'ALB

#### **Objectives:**

To better understand at particle scale the pyrolysis behaviour of biomass (100 μm – 10 mm) under the typical heating conditions in industrial Fluidised Bed gasifiers:

- 1 bar



- High heat flux (> 10<sup>5</sup> W.m<sup>-2</sup>)

#### Plan of experiments (laboratory scale)







# Drop Tube Reactor (350 µm – 800 µm)

Bioenergy - II: Fuels and Chemicals from Renewable Resources - 11/03/09



| Biomass                            | Beechwood C <sub>6</sub> H <sub>8.8</sub> O <sub>4</sub><br>(moisture 7 wt.%) |  |
|------------------------------------|-------------------------------------------------------------------------------|--|
| N <sub>2</sub> velocity (m/s)      | 0.35                                                                          |  |
| Particle size (µm)                 | 350, 500, 700, 800                                                            |  |
| Temperature (℃)                    | 800; 950                                                                      |  |
| Pressure (bar)                     | 1                                                                             |  |
| Reaction zone length (m)           | 0.3, 0.5, 0.7, 0.9                                                            |  |
| Estimated solid residence time (s) | ~ 0.6 – 2 # 350 μm<br>~ 0.3 – 1 # 800 μm                                      |  |

#### **Solid analysis**

Ash content  $\rightarrow$  Tracer method

 $\begin{array}{l} \textbf{Gas analysis} \\ \textbf{H}_2, \, \textbf{CH}_4, \, \textbf{CO}, \, \textbf{CO}_2, \, \textbf{C}_2\textbf{H}_2, \\ \textbf{C}_2\textbf{H}_4, \, \textbf{C}_2\textbf{H}_6, \, \textbf{C}_3\textbf{H}_8 \, , \, \textbf{C}_6\textbf{H}_{6,} \, \textbf{H}_2\textbf{O} \end{array}$ 

#### Solid settling box

# **Total gas evolution**



# Influence of T on the gas components yields



The increase of temperature (800  $\rightarrow$  950 °C) seems to change mainly the yields of H<sub>2</sub>, C<sub>2</sub> species, and C<sub>6</sub>H<sub>6</sub> by enhancing the cracking reactions.

# Influence of Dp on the gas components yields



#### Under operating conditions in DTR Negligible influence of particle size (350 µm → 800 µm) on the final gas components yields



ECOLE DES MINES D'ALB

# Drop Tube Reactor (350 µm – 800 µm)

# (Limitation of solid residence time by the reactor configuration)

larger particles

# Horizontal Tubular Reactor (800 µm – 6 mm)



#### Introductio Drop Tube Reactor Horizontal Tubular Reactor pmparise Conclusions

# Influence of Dp on the gas components yields



#### Under operating conditions in HTR Slight influence of particle size (800 $\mu$ m $\rightarrow$ 6 mm) on the final products yields.

# Influence of gas phase reactions



Increasing gas residence time seems to change the yields of  $H_2$  and  $C_2$  species by favouring the cracking reactions of hydrocarbons.

# Comparison DTR/HTR (Dp # 800 µm)



SAME T (950 ℃), and gas residence time (~3.5 s)

**ATTENTION: different** reactor configuration and solid residence time



| Mass yield (wt.% of dry biomass) | DTR  | HTR  |
|----------------------------------|------|------|
| H <sub>2</sub>                   | 1.7  | 1.4  |
| CO                               | 48.4 | 45.5 |
| CO <sub>2</sub>                  | 10.1 | 14.8 |
| CH <sub>4</sub>                  | 5.7  | 9.1  |
| C <sub>2</sub> H <sub>4</sub>    | 3.7  | 2.7  |
| C <sub>2</sub> H <sub>2</sub>    | 3.1  | 1.0  |
| C <sub>2</sub> H <sub>6</sub>    | 0    | 0.0  |
| Total dry gas                    | 73   | 75   |

Results obtained in 2 reactors are comparable.

#### Conclusions



Beech wood → char (~ 10 wt.%) + gas (~ 80 wt.%) + tar (CO, H<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>6</sub>H<sub>6</sub>)



- Particle size (350µm 6 mm) changes the solid devolatilization rate, but has no/slight influence on the final product yields.
- Increasing temperature increases solid devolatilization rate and favours gas phase cracking reactions.
- Gas phase reactions change mainly the yields of H<sub>2</sub> and C<sub>2</sub> species.





# **Obrigada Thank you Merci**

谢谢

If you have any questions, please contact:

li.chen@cea.fr

capucine.dupont@cea.fr