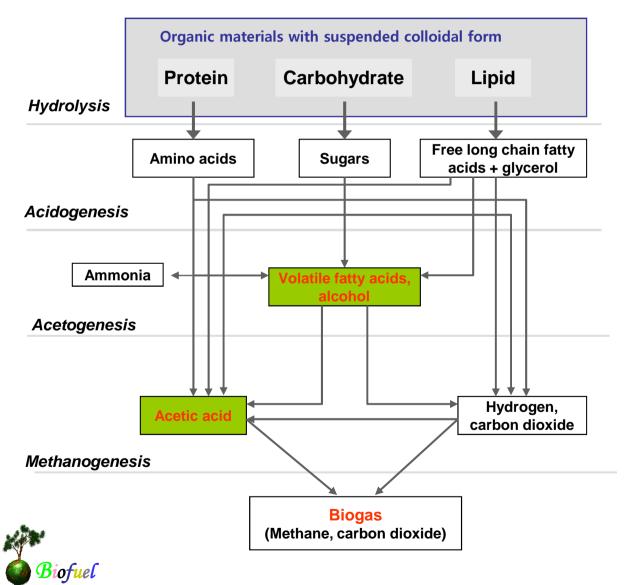
Bioenergy II (RIO DE JANEIRO 8-13 March, 2009)

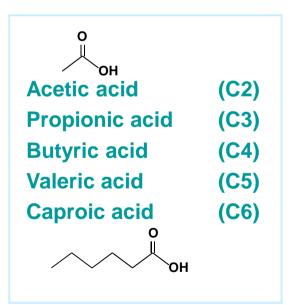
Biofuels Production from Volatile Fatty Acid Platform

Ho Nam Chang

Professor of Biochemical Engineering

Department of Chemical & Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1, Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea


E-mail: hnchang@kaist.edu, Tel: +82-42-350-3912, Fax: +82-42-350-3910



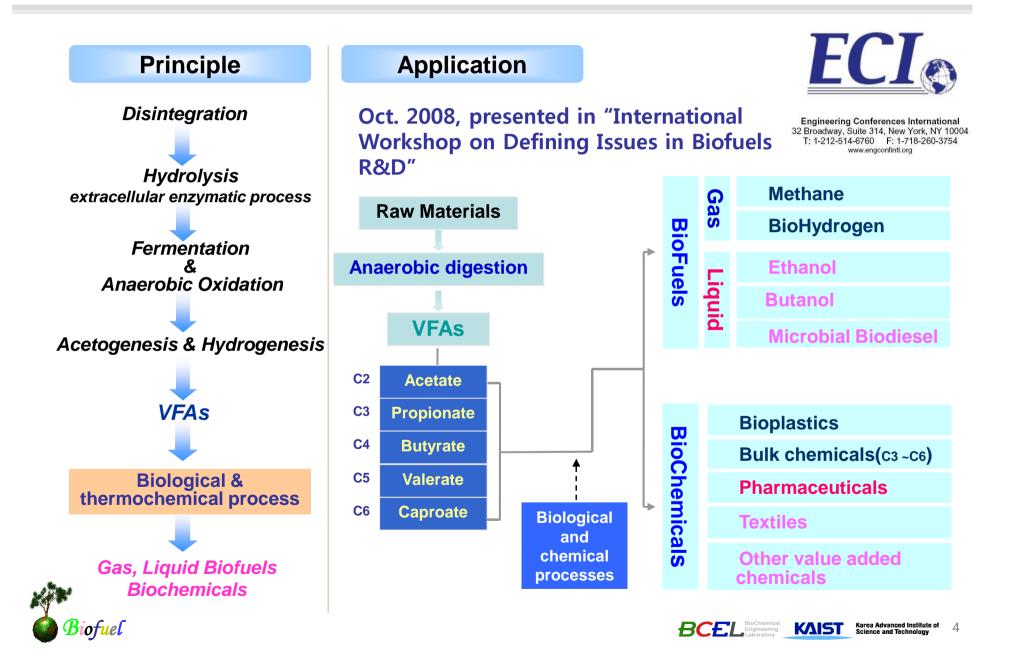
What are VFAs?

: Volatile Fatty Acid, carboxylic acid with less than C6

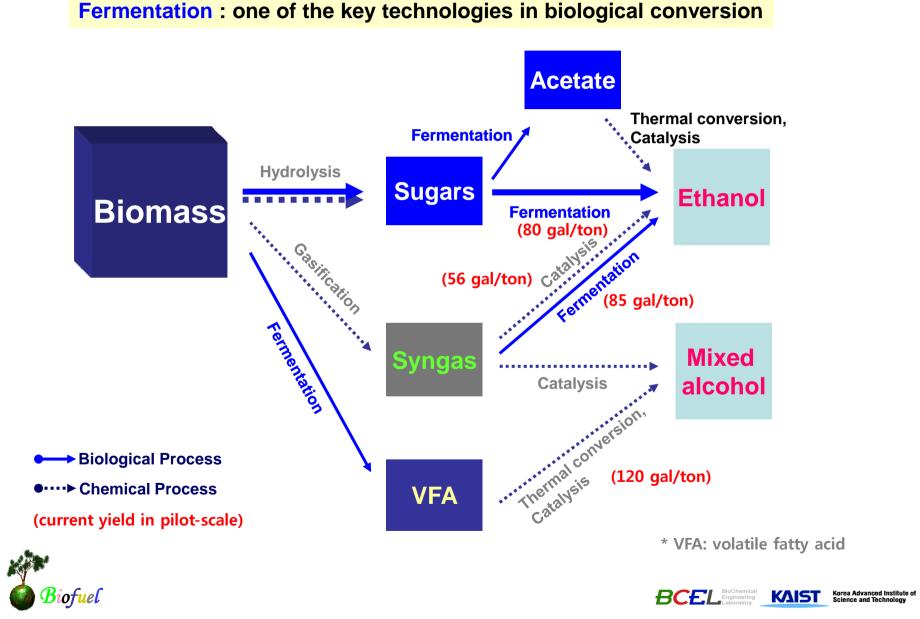
- No need sterilization
- No additional hydrolysis enzyme
- Mixed culture
- Acidogenesis : fast
- Methanogenesis : slow

KAIST

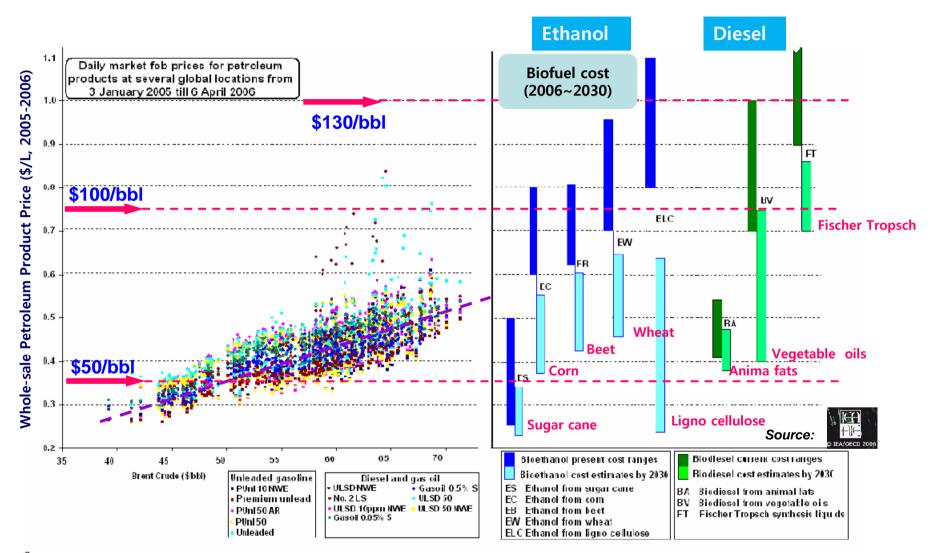
BCEL


2

VFA-based Biofuels

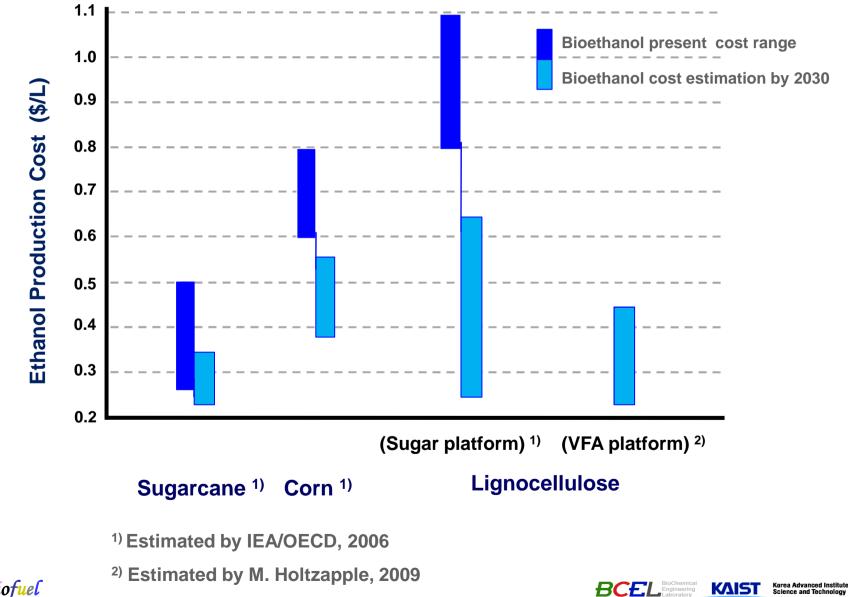

- 1. Pretreatment (lignin: little, regular)
- 2. VFA (slow \rightarrow high rate)
- 3. Concentration of VFAs (30g/L→ 400g/L)
 - Evaporation (25kwh/m³ ton of water)
 - Solvent extraction (efficiency → durability)
- 4. Hydrogenation (catalytic, 200°C, 20 atm)
 - $CH_3COOH + 2H_2 \rightarrow C_2H_5OH + H_2O$
 - Propionic acid + $2H_2 \rightarrow propanol + H_2O$
 - Butyric acid + $2H_2 \rightarrow butanol + H_2O$
- 5. Separation to -> ethanol, propanol, butanol

VFA Platform



Production Routes of Fuel Alcohols

5


Liquid Biofuel Costs (2005~2030)

6

Cost Comparison

Demand for New Process Development

Flexible application to various biomass

- Organic wastes
- Agricultural wastes
- Forest residues
- Energy crops
- Marine biomass
- MSW

Cost effective process

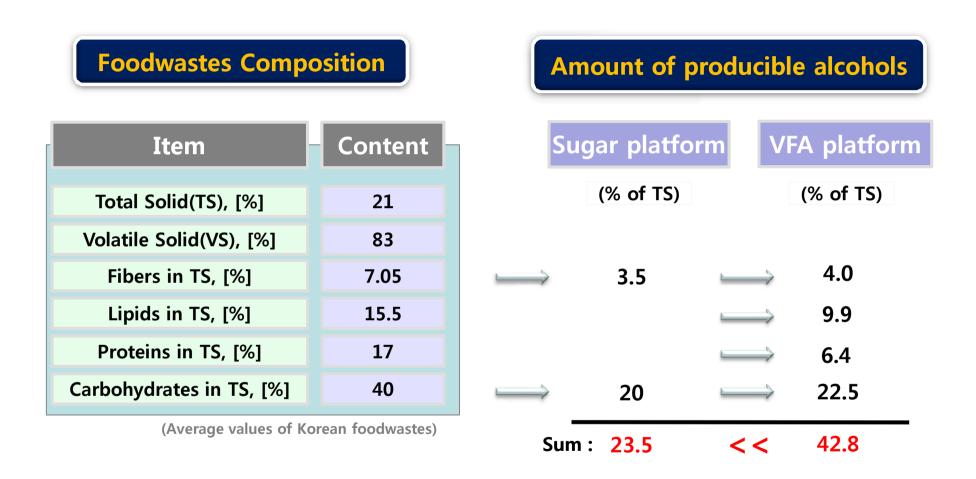
- No sterility
- No GMOs
- Adaptable
- No pure cultures
- Low capital
- No enzymes
- High product yields
- No vitamin addition
- Co-products not required

Requirement of new biorefinery platform less sensitive to species, composition, and water content of biomass

Search for New Biofuel Platform

- **1. Abundant Raw Materials in Korea** and in other countries.
 - Materials with negative cost: foodwaste, sewage sludge, fallen leaves and other biodegradable organic wastes
- 2. Do I have a good technology and experience ?
 - Fermentation with high cell density culture (1982~)
 - Foodwaste treatment since 1996
- 3. The cost of production should be competitive,
 - vs. existing biofuels (sugar cane, grain-based; \$100 bbl-oil)
 - Even at a smaller scale, the product should be marketable so that technology development may go on.

My group started biofuel research in 2005. We came to a conclusion. \implies VFA-platform

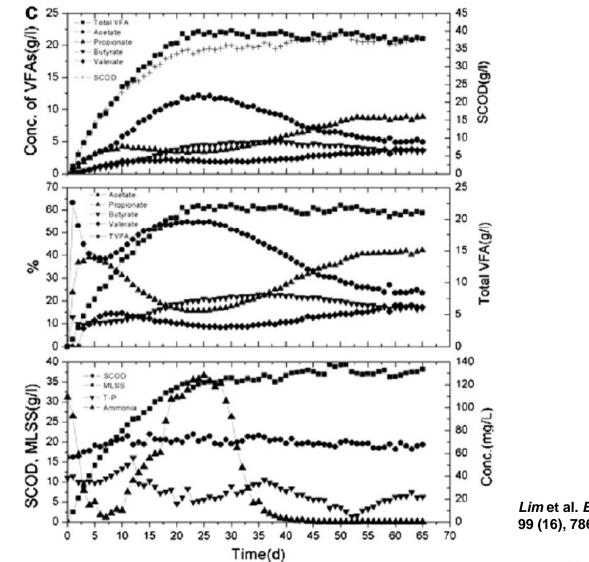

and Technology

(Alcohol production from lignocellulosic biomass)

Mass

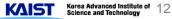
Callulacia	Compo	sition		Pretreat.	Hydrolysis	C6 fermer	C5 nt. ferment.	Recovery	Sum EtOH	Total EtOH
Cellulosic	C6	38%	\rightarrow	90%	90%	51%		95%	14.91%	
Ethanol	C5	27%	\rightarrow	90%	90%		51%	95%	10.60%	25.51%
(Sugar platform)	Lignin	20%								(319 L/t)
	Ash	3%	_							
	Others	12%								
Mixed	Compos	sition		Pretreat		robic stion	VFA recovery	Hydroge Rxn	en Sum Alcohol	Total Alcohol
	C6	38%	\rightarrow	90%	76	%	95%	77%	19.01%	
Alcohol	C5	27%	\rightarrow	90%	76	%	95%	77%	13.51%	34.89%
(VFA platform)	Lignin	20%								(436 L/t)
	Ash	3%		000/		A (
	Others	12%	\rightarrow	90%	30	%0	95%	77%	2.37%	
Money										
Cellulosic Etha	nol Ret	urn \$:	= \$0.3	3/kg(EtOF	I) * 0.2551/	'kg bior	nass = \$ 0.07	65/kg bior	nass (Bioma	ass $\cos t = 52.3\%$
Mixed Alcohol Return \$ = \$0.3/kg(EtOH) * 0.3489/kg biomass = \$0.105/kg biomass (Biomass cost = 38.1%)										
* Biomass price = $40/tonne$										
Energy										
Cellulosic Ethanol $Y=25.51\% \rightarrow 26.84 \text{ MJ/kg} * 0.2749 \text{ kg/kg} = 7.28 \text{ MJ/kg biomass}$										
Mixed Alcohol $Y = 34.89\% \rightarrow 30.2 \text{ MJ/kg}^{1} * 0.3489 \text{ kg/kg} = 10.54 \text{ MJ/kg} \text{ biomass } (9.28 \text{ MJ/kg})^{2}$										
	¹ Ethanol:Propanol:Butanol = 6:1:3 ² H_2 consumption = - 120 MJ/kg*0.3489*0.03 g H_2 /g alcohol = - 1.256 MJ									
Biofuel								BCE L	BioChemical Engineering Laboratory	Korea Advanced Institute of 10

Korean Foodwastes



- Usually organic wastes have high protein and lipid content.
- Especially VFA platform is suitable for organic wastes.

VFA Fermentation



Lim et al. *Bioresource Technology*, 99 (16), 7866-7874 (2008)

VFA Composition Control

Temperature

Effect of temperature on acidogenesis of food wastes

	Temperature (°C)			
	25	35	45	
SCOD (mg/L)	30,500-32,500	37,000-38,000	35,000-36,500	SCOD
TVFA (g/L)	16.5-17.5	23.0-24.0	19.3-20.3	TVFA
Acetate (g/L, %)	3.00-3.50,	7.15-7.80,	9.50-9.90,	Acetat
	20.0-21.5	30.0-33.0	48.5-49.5	
Propionate (g/L, %)	7.30-8.00,	5.88-6.74,	0.60-0.90,	Propio
	44.0-46.0	24.8-28.1	3.2-4.2	-
Butyrate (g/L, %)	2.40-2.70,	4.72-5.10,	3.40-3.50,	Butyra
	14.5-16.0	19.8-21.6	17.0-18.0	
Valerate (g/L, %)	3.00-3.20,	2.77-3.42,	0.90-1.50,	Valera
	18.2-19.2	11.7-14.3	4.3-6.0	
Caproate (g/L, %)	0, 0	0.52-0.97,	4.30-5.00,	Capro
S S		2.2-4.0	23.0-25.0	
Succinate (g/L, %)	0, 0	0.30-2.57,	0, 0	Succina
		1.3-10.9		
$NH_{4}^{+}-N$ (mg/L)	1.0-4.0	7.2-20.2	20.0-30.0	NH ₄ ⁺ -
$PO_4^{3-}-P (mg/L)$	40.0-50.0	74.0-88.0	75.0-95.0	PO4 -
Yield (VFA/VS ₀)	0.24-0.26	0.34-0.35	0.28-0.30	Yield (
Productivity (g VFA/L d)	2.06-2.19	2.88-3.00	2.41-2.54	Produc (g V

Effect of pH on acidogenesis of food wastes

	pH		
	5.0	5.5	6.0
SCOD (mg/L)	27,000-29,000	37,000-38,000	39,000-40,000
TVFA (g/L)	15.0-18.0	23.0-24.0	24.5-25.5
Acetate (g/L, %)	2.50-3.00,	7.15–7.80,	11.3–12.7,
	16.3-18.2	30.0-33.0	48.1-50.9
Propionate (g/L, %)	0.50-0.70,	5.88-6.74,	5.40-6.50,
	2.8-4.4	24.8-28.1	22.0-25.1
Butyrate (g/L, %)	2.60-3.20,	4.72-5.10,	5.00-5.50,
	16.3-18.4	19.8-21.6	20.0-21.5
Valerate (g/L, %)	0, 0	2.77-3.42,	1.40-1.70,
		11.7-14.3	5.5-7.0
Caproate (g/L, %)	1.70-2.00,	0.52-0.97,	0, 0
	11.8-13.0	2.2-4.0	
Succinate (g/L, %)	6.50-8.50,	0.30-2.57,	0, 0
	44.0-48.0	1.3-10.9	
$NH_4^+ - N (mg/L)$	0	7.2-20.2	35.0-51.0
$PO_4^{3-}-P (mg/L)$	60.0-90.0	74.0-88.0	65.0-80.0
Yield (VFA/VS ₀)	0.22-0.26	0.34-0.35	0.36-0.37
Productivity (g VFA/L d)	1.88-2.25	2.88-3.00	3.06-3.19

KAIST Korea Advanced Institute of 13

- High temperature: increase of acetate concentration and ratio
- High pH: increase of short chain VFA
- Controllability of VFA composition

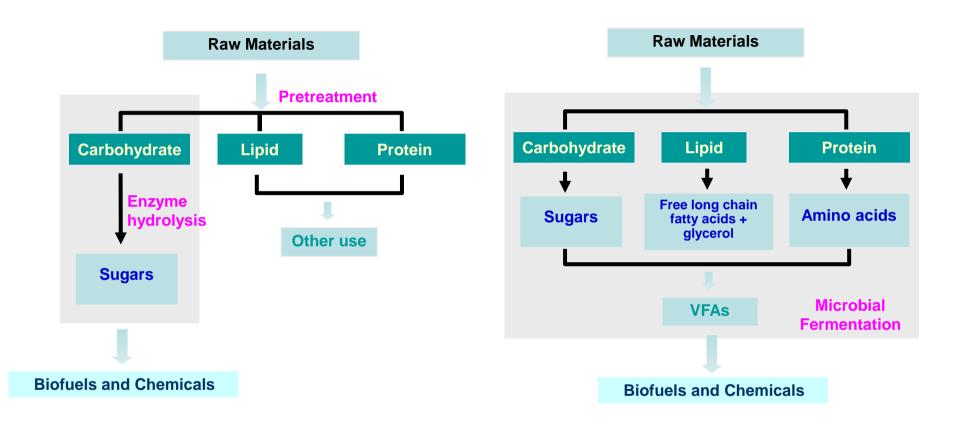
Treatable Biomass

Low lignin biomass (no pretreatment need)

- Agricultural organic wastes
- Sludge
- Food wastes
- Manure
- Marine biomass
- All biodegradables

High lignin biomass (need pretreatment)

- Woods (forest wastes)
- Agricultural wastes
- Energy crops



Korea Advanced Institute of 14 Science and Technology

KAIST

Sugar Platform versus VFA Platform

Biomass is mainly composed of carbohydrates, lipids, and proteins. And many biomasses are the complex of biomass with various composition. Using the sugar part of biomass mixture, especially wetted organic wastes, is wasteful and needs the large wastewater treatment facilities. The VFA platform may be a modified form of biogas platform to diversify producible products, most part of biomass is converted to simple acids, and do not need additional enzymes.

Sugar Platform versus VFA Platform

Sugar platform	Advantage Favorable substrate for microbes High energy potential High inhibitory concentration	Disadvantage Only use sugars part of biomass High sugar price High enzyme cost Sugar uptake specificity (C5 & C6)
VFA platform	Use all biomass (wastes) Low acids production cost No enzyme addition High VFA yield Hydrogen coproduction No sterilization	Unfavorable substrate for microbes Low chemical energy level of VFA Relatively high inhibition to microbes

Less CO₂ emission than sugar-P

Major Bottlenecks in VFA Platform

VFA production

- Pretreatment of biomass (lignin removal)
- Low acid concentration (~ 30 g/L)
- Productivity enhancement (higher than 1 g/L/hr)
- VFA recovery from dilute fermentation broth
 - Distillation
 - Solvent extraction
- Inhibition of methane formation

Chemical route

- Catalysts (e.g. hydrogenation, hydrogenolysis)
- Catalysts life cycle

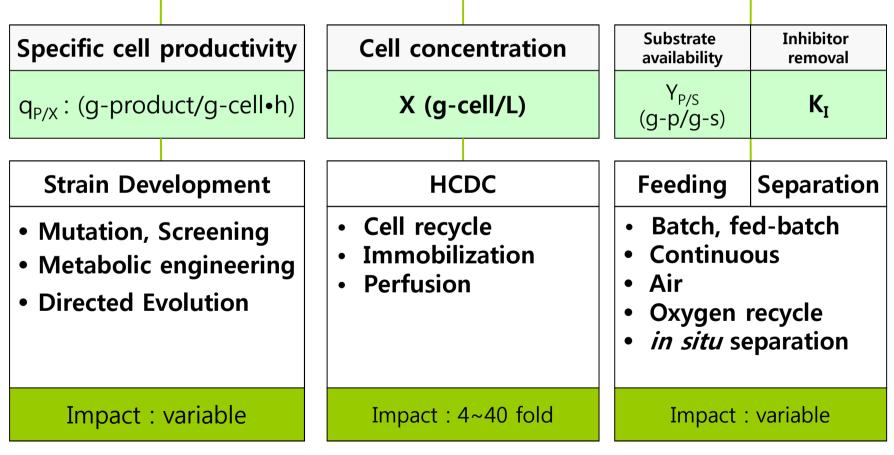
Biological route

- Strain development and fermentation
- Metabolic engineering for acid uptake and conversion (e.g. biohydrogenation)

MixAlco Process Plant

Terrabon Semi-Works Plant Football field = 1.32 acres Terrabon Semi-Works Plant = 1.43 acres

- Capacity : five dry tons biomass/day
- > Too large land area for pretreatment and fermentation

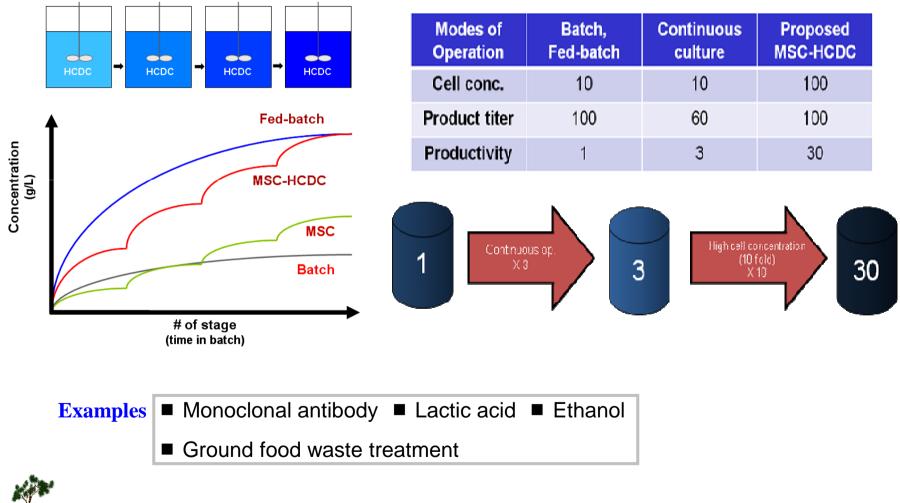


KAI

Korea Advanced Institute of Science and Technology

Fermentation Productivity

Q_p (g-product/L.h)



KAIST Korea Advanced Institute of 19 BCEL

High Efficiency Fermentation Technology

MSC-HCDC : Multistage Continuous High Cell Density Culture

BCEL.

Korea Advanced Institute of 20

KAIST

Methods of VFA Recovery

Concentration (water removal)

Phase change

- Distillation (MSF, ME, VC, Solar) : heat energy
- Freezing (FD) : cold energy

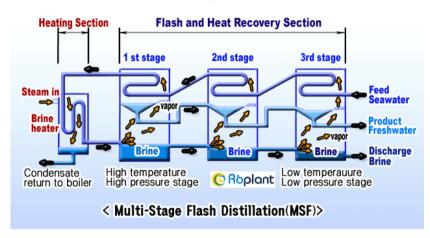
> Membrane

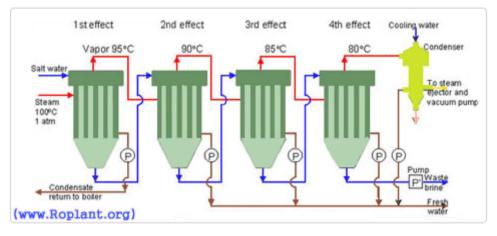
- Reverse osmosis (RO, NF) : pressure difference (mechanical)
- Electro-dialysis (ED) : electrical energy

Water extraction

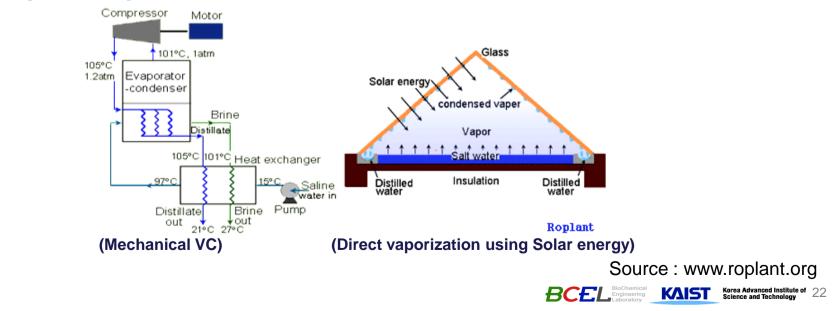
• Amine dewatering

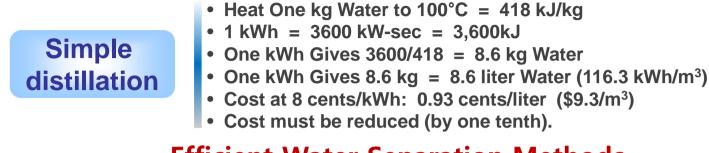
VFA purification

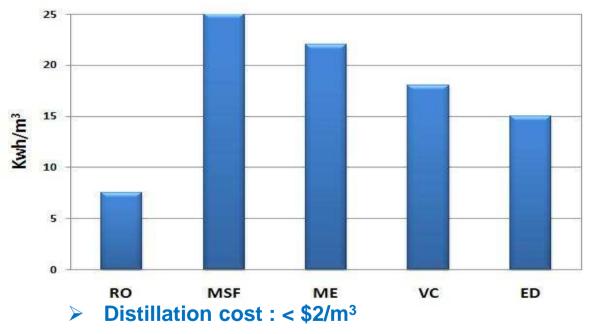

- Solvent extraction (amine solvent)
- Back-extraction
- Distillation (reactive distillation)



Efficient Water Distillation


MSF: Multiple-Stage Flash Distillation


MED: Multi-Effect Distillation


VCD: Vapor Compression Distillation

Water Distillation Energy

Efficient Water Separation Methods

RO : Reverse Osmosis ME : Multi-Effect Distillation

ED : Electro-Dialysis

MSF : Multi-Stage Flash VC : Vapor Compression Distillation Source : Park SJ, KIMM, 2007

BCEL BioChemical Engineering KAIST Korea Advanced Institute of 23

Catalysts for Alcohol Synthesis

Hydrogenolysis catalysts

: VFA ester conversion to alcohols

• Copper chromite

- high temperatures (> 200°C)
- high pressures (> 600 psi) (> 40.8 atm)
- widely used in industry (e.g., for making detergent alcohols from fatty acids)

Reduced CuO-ZnO catalyst

- low temperature (~150°C)
- low pressure (<350 psi) (< 23.8 atm)
- preferred

Korea Advanced Institute of 24 Science and Technology

Korea Advanced Institute o Science and Technology

κλιςτ