Departamento de Energias Renováveis Department of Renewable Energy

LNEG – Laboratório Nacional de Energia e Geologia National Laboratory of Energy and Geology

Anaerobic digestion of Olive Mill Wastewater: Anaerobic Filter vs. Hybrid

Isabel Paula Marques isabel.paula@ineti.pt

Marta Gonçalves and Paulo Freitas

Olive oil industry

Great economic and social importance: Mediterranean area [Olives are also cultivated: USA, Argentina, Australia and South Africa]

OMW

[three-phase extraction system]

OMW

- generated in huge quantities
- during a short period of the year
- one of the most polluting agro-industrial effluents

OMW holds a great energetic potential (Biogas)

Anaerobic digestion - OMW

promising attempt to face the negative environmental impact

- high organic matter of these effluent (200 kg COD m-3)
- lower: sludge volumes, space requirement and capital cost aerobic proc.,
- easily restarting after several mouths of shutdown,
- low energy requirement for operation,
- recovering the valuable end-product --- methane

Olive Mill Wastewater - OMW

- inhibiting substances (phenolic lipidic-LCFA)
 unfavourable C/N ratio
- acid pH

render

OMW inappropriate direct biological treatment

Reduce concentration and toxicity

Olive Mill Wastewater

biological

physic chemical

high dilutions

addition of alkalis

pre-treatments

OBJECTIVE: treat and recover the energetic potential of the raw OMW anaerobic digestion

Successful digesting stability is obtained

"complementary substrate" concept

Depart. of Renewable Energies - LNEG

- without any pre-treatment
- tap water citution
- chemical correction of OMW

OMW: composition + seasonal effluent

able to complement OMW

Piggery effluent

to secure a stable operation year-around

8-13 March 2009, Rio de Janeiro. Brasil

OBJECTIVE: Anaerobic Filter vs. Hybrid

Operational difficulties

8-13 March 2009, Rio de Janeiro. Brasil

Packing bed material – Lab.

several long-term experiments

good progress

no troubles as a result of a clogging process

OBJECTIVE: Anaerobic Filter vs. Hybrid

economic issue:

least of packing material required

packing material = 30% reactor height

Operational conditions

Operational conditions

Results

Gradual increase of biogas production – increment LA Good methane content

Results

AF \neq H = COD removal

Results. Solids removal: 27-41% OMW v/v

	AF	/ н \	
TS (%)	51-63	22-50	
VS (%)	60-76	41-67	
VSS (%)	66/80-96	5/55-69	

Some comments are needed to better understand the finding

Operational conditions

Sharp change in sludge bed

The blanket of biologic solids went upwards and penetrated the fixed bed section

Some biomass was lost - not cause the failure

[18% OMW] La = 5.3-9.5 kg COD m⁻³ d⁻¹ (31-55 kg COD m⁻³)

Gas - 1.3-2.1m³ m⁻³ d⁻¹ COD removal - 57-65/69%

Operational conditions

COD removal: + 53% OMW v/v

 \neq digesters behaviour = AF \downarrow . H \uparrow

Hybrid: VFA = \approx 4 times more concentrated

Conclusions

Anaerobic filter and hybrid: can be used to treat the raw OMW

(without any pre-treatment or chemical correction)

AF ≠ H (27 and 41% OMW v/v) = COD and solids removal AF=69-83% vs. H=60-73%

[overload (18% OMW v/v)]

H recovery process \rightarrow packed bed material was effective in preventing the excessive loss of biomass Confirmation \rightarrow better performance of H than AF (53% OMW v/v) [COD removal: AF = 80 \rightarrow 70%, H = 73-78%]

Conclusions

Anaerobic Filter vs. Hybrid

Important issue related to the applicability of the Hybrid

Anaerobic digestion of Olive Mill Wastewater

is the lower costs related to the amount of packing material

Acknowledgements

FCT Fundação para a Ciência e a Tecnologia

MINISTÉRIO DA CIÊNCIA, TECNOLOGIA E ENSINO SUPERIOR

financial support project PTDC/ENR/69755/2006 and the grant given to Marta Gonçalves SFRH/BD/40746/2007.

Departamento de Energias Renováveis Department of Renewable Energy

LNEG – Laboratório Nacional de Energia e Geologia National Laboratory of Energy and Geology

Anaerobic digestion of Olive Mill Wastewater: Anaerobic Filter vs. Hybrid

Isabel Paula Marques

isabel.paula@ineti.pt

Marta Gonçalves, Paulo Freitas

Thanks for your attention