

In silico analysis for the production of higher carbon alcohols using Saccharomyces cerevisiae

Balaji Balagurunathan¹, Sudhakar Jonnalagadda¹, Dong-Yup Lee^{2,3}, Rajagopalan Srinivasan^{1,2}

 ¹Institute of Chemical and Engineering Sciences, A*STAR, Singapore,
²Dept of Chemical and Biomolecular Engineering, National University of Singapore,
³Bioprocess Technology Institute, A*STAR, Singapore.

Bioenergy-II Conference

Session : Chemicals from Biomass and Biorefinery Integration

Outline

- Higher carbon alcohols
- Integrated Bioprocess Development
- Genome Scale Metabolic Models and Constraint Based Analysis
- Butanol Case Study
- Results

Higher Carbon Alcohols

- Alcohols with 4 or more carbon atoms
- Higher energy content and lower hygroscopicity and vapor pressure make them a better fuel additive
- Applications in food and flavor industries
- Applications as solvent and feedstock in industries

Fuel additives

Flavor compounds

Feedstock / Solvent for Industry

Production of higher carbon alcohols

- Microbial bioprocesses for the production of higher carbon alcohols
 - Advantages
 - Utilization of renewable resources
 - Environment friendly operation
 - Suitable for Large Scale production
 - Disadvantages
 - Lower yields
 - Toxicity of alcohols to microorganisms
- Bioprocess development
 - Conventional vs. Integrated processes

Bioprocess Development Workflow

CFS

Systems Approach for Integrated Bioprocess Development

Genome Scale Metabolic Models

Genome Scale Metabolic Reconstruction (GENRE)

- Genotype \rightarrow Phenotype
- Biochemically and genetically structured, highly curated compilation of primary biological information.
- Integration of high-throughput omic and Bibliomic data with small scale detailed experiments

Genome Scale Metabolic Model

- GENRE can be converted to a mathematical model by the application of biological and physico-chemical constraints
- Application of computational methods to assess phenotypic characteristics.

Case Study – Butanol Production

- Selection of microorganism
- Selection of metabolic pathways
 - Fermentative Vs Non-fermentative Pathways
- In silico flux balance analysis (FBA)
 - Tradeoff between growth and product formation
 - Yield of butanol from hexose and pentose sugars
 - In silico gene manipulation studies
 - Gene Deletion
 - Gene Insertion
 - Dynamic FBA

Criteria for the selection of microorganisms

- Micro-organism Selection
 - Yield and Productivity
 - Suitability for Industrial Conditions
 - Ease of genetic manipulation/availability of tools

1105 and 00	5115 01 1	unous n	iturur in	reroorge	inionio (and regul	a to maas	indi odianor j	Journa	•		
Organism	Natur	al sugar	utilizati	on pathy	ways	Major p	oroducts	Tolerance			O ₂ needed	pH range
	Glu	Man	Gal	Xyl	Ara	EtOH	Others	Alcohols	Acids	Hydrolysate		
Anaerobic bacteria	+	+	+	+	+	+	+	-	-	-	-	Neutral
E. coli	+	+	+	+	+	-	+	-	-	-	-	Neutral
Z. mobilis	+	-	-	-	-	+	-	+	-	-	-	Neutral
S. cerevisiae	+	+	+		-	+	-	++	**	++	-	Acidic
P. stipitis	+	+	+	+	+	+	-	-	-	-	+	Acidic
Filamentous fungi	+	+	+	+	+	+	-	++	++	++	-	Acidic

Pros and cons of various natural microorganisms with regard to industrial ethanol production

Hahn- Hagerdal et al.(2007)Towards industrial pentose-fermenting yeast strains, Appl. Microb. Biotechnol. 74, 937-953

Genome Scale Metabolic Model

Saccharomyces cerevisiae iND750

- 750 genes, 1149 reactions
- All the reactions are both elementally and charge balanced
- 8 Compartments
 - [c] : cytosol
 - [g] : Golgi apparatus
 - [n] : nucleus
 - [v] : vacoule

- [e] : extracellular
- [m]: mitochondrion
- [r] : endoplasmic reticulum
- [x] : peroxisome
- Current Model contains 750 genes,1266 reactions and 1061 metabolites

Pathways for Pentose Sugar Utilization

Hagerdal et al., 2007, Appl Microbiol Biotechnol, 74: 937-953

Pathways for butanol production

Clostridia - Fermentative Pathway Ehrlich Pathway – Non Fermentative GLU COSE Amino Transamination EMP Pathway acid ARO8 2-oxoglutarate PYRUVATE ARO9 BAT2/TWT2 BATI/TWT1 glutamate ACETATE +----- ACETYL-CoA ----+ ETHANOL a-keto acid ARO10 ACETYL-CoA Decarboxylation THL (thiL) CoASH PDC1 PDC5 CO. ACETOACETYL-CoA PDC6 NADH+H* HBD (hbd) 'fusel aldehyde' NAD* Reduction Oxidation BHYDROXYBUTYRYL-CoA ADH1, ADH2, ALD1 ADH3, ADH4, GRT (art) ALD2 NADH, H⁺ NAD⁺ +H,0 ADH5, ADH6, ALD3 SFAL, AAD3. CROTONYL-CoA ALD4 NAD+ 4 NADH. H* AAD4, AAD6, ALD5 AAD10, AAD14, NADH+H* BCD (bcd. etfA, etfB) ALD6 AADIS, AADI6. •NAD* YCR105W. BUTYRATE +----- BUTYRYL-CoA YPL088W NADH+H* 'fusel acid' in 'fusel alcohol' BYDH (adhe1 or adhe) NAD* CoASH Export ATP BUTYRALDEHYDE PDR12 ADP NADH+H* BDH (adhe1 or adhe) NAD* 'fusel acid' out BUTANOL CFS A * S T A R

Butanol Yield- Hexose and Pentose Sugars

Wild Type I	Model iND750							
Substrate	Growth rate (h ⁻¹⁾	Uptake rate mmol/gh	Butanol Yield g/g	Max Yield g/g (Max Theo. Yield 0.411 g/g)				
Glucose	0.0858	-5	0.0168	0.185				
iND750 + F	ungal Xylose	Utilization Pa	thway					
Xylose	0.0712	-5	0	0.181				
iND750 + Bacterial Xylose Utilization Pathway								
Xylose	0.0699	-5	0.0137	0.181				
iND750 + B	acterial Arabi	nose Utilizati	on Pathway					
Arabinose	0.0699	-5	0.0137	0.181				
iND750 + F	ungal Arabino	se Utilization	Pathway					
Arabinose	0.0802	-5	0	0.181				

Growth vs. Product Formation

Gene Knockout and Insertion Studies

- Manipulation of cellular metabolism is essential for enhancing the product formation
- Identification of gene targets
- Gene Deletion
 - Double and Triple Gene Knockouts were calculated based on a reduced set of initial genes (which excludes essential genes and genes associated with blocked reactions)
- Gene Insertion
 - Single gene insertion analysis was carried out based on a assembled set of candidate reactions from the KEGG database

Gene Deletion studies – Triple Gene Deletion

Insertion studies - Single reaction Insertion

Insertion studies – Single reaction Insertion

Dynamic Flux Balance Analysis

- The mathematical model for the process is coupled to the detailed stoichiometric description of cellular metabolism (FBA model)
- The combined model can be used to identify metabolic bottlenecks and gene targets to be manipulated for enhancing the yield
- Additional constraints can be applied to this model to enable integrated strain and process development.

Dynamic Simulation (Dynamic FBA)

Summary

- Systems approach based on genome scale metabolic modeling and analysis has been proposed for Integrated bioprocess development.
- The utility of genome scale metabolic modeling and analysis is demonstrated using the case study for the production of butanol using *Saccharomyces cerevisiae*
 - The metabolic bottlenecks for the production of butanol has been identified by in silico metabolic flux analysis
 - Gene targets to be manipulated for enhancing the yield of butanol has been identified based on gene knockout and gene insertion studies
 - The utility of FBA coupled with dynamic simulation for process development is demonstrated.

Thank you for the attention...

