Jan Piskorz, Piotr Majerski, Ed Hogan*

Hydrous Thermolysis of Biomass Production of Hodge' Carbonyls & Oligomeric Lignin

Hodge' Carbonyls

	Feed					
Yields wt% dry feed	Sucrose	Glucose	Bleached pulp, Tembec Cellulosics			
Hydroxyacetaldehyde	34	57 - 62	18			
Glyoxal	3.5	4.4	4.1			
Methylglyoxal/glyceraldehyde	above 1	3.3	above 1			
Acetol	2.5	2.3	2			
Formaldehyde	11.5	8	5.1			

Key Components of Wood PyrolysisCondensates

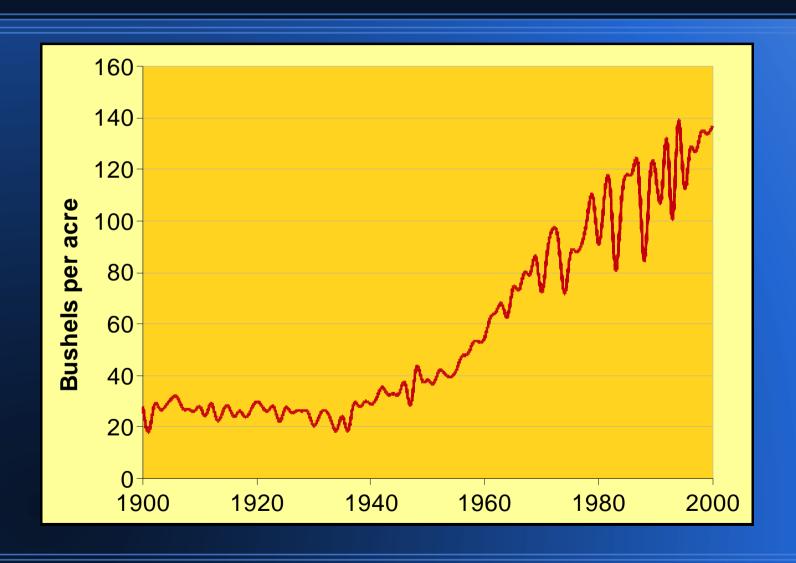
	Softwood mix: - fir-	Hardwood, beech from					
Yields, wt% dry feed	spruce from	Eastern					
	British Columbia	Europe					
Water soluble fraction:							
Hydroxyacetaldehyde	15	9.5					
Glyoxal	1.4	2					
Formaldehyde	2.4	2.5					
Water insoluble fraction:							
Oligomeric lignin	22	22					

Model Structure of Humic Acid

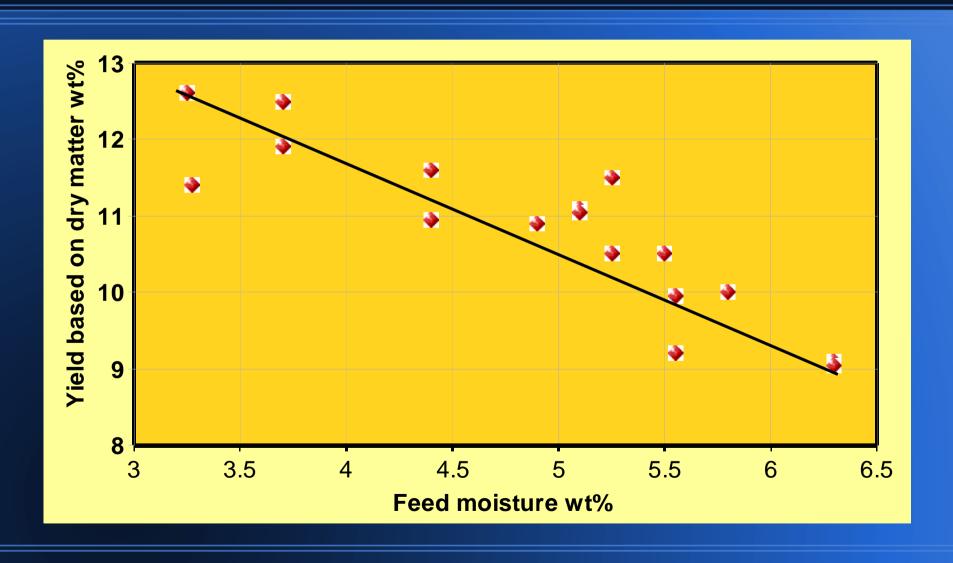
Other Typical Results

		Sugar Cane						Miscanthus	Corn Stover		Flax Shives
		Bagasse									
Oligomeric Lignin	12	13.5	14	17	15	18	16	19	20	20	16
Char	11	12	14	12	15	13	14	13	15	17	16

Fast pyrolysis: - proposed, potential applications of main product streams

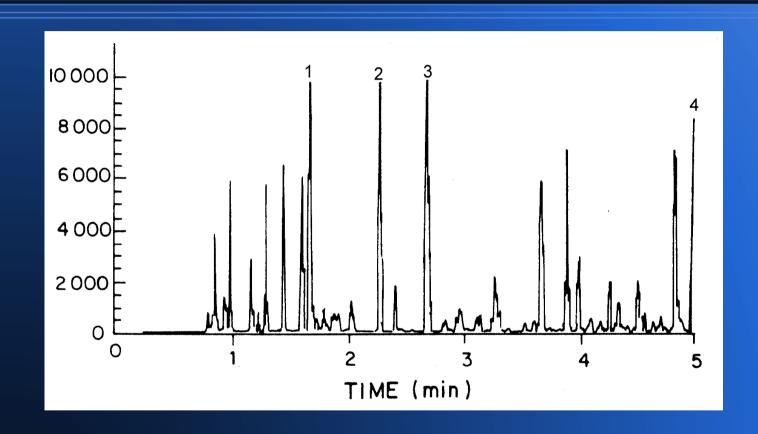

	Energy	Agriculture	Green Chemistry	
	Hydrogen (S. Czernik, 2002)	Water-soluble polymeric fertilizers - melanoidins (after neutralization with	Chelating/complexing agents	
Water soluble Hodge'	Synthesis gas (methane co-reforming)	ammonia, ureas) Micro-nutrients carriers (Bio-Pirol, Brazil)	Co-polymers based on hydroxyacetaldehyde dimer	
carbonyls	Gasoline	Pesticides, anti-fungal and pathogen	Food aromas/browners	
Typical yield: 35 - 45wt%	Water-based catalysis (Huber, Dumesic, 2006)	destruction agents (UWO)	Synthetic self-replicators	
33 13 4670	Steam reforming towards	Fumigation of tomato/strawberry pads	H ₂ S capture	
	synthesis gas (Arauzo, 2009)	runingation of tomato/strawberry pads	Cosmetics/embalmers	
Oligomeric lignin Typical yield: 15 - 25wt%	Gasoline boosters	SOC containing humus precursor	Resin modifiers/fillers	
	Cyclo-paraffins (Piskorz, 1989) and	N,P,K-C fertilizers		
		Germination accelerators	Anti-oxidants (ala pycnogenol, resveratrol, betulin)	
	UOP hydrogenation (2009)	Seed coating		
Bio-char Typical yield: 10 - 20wt%	Boilers, kilns,	Permanent fertilizer USDA ARS - reduced leaching of N and P (2008)	d Absorbers	
	metallurgy	Reduction of soil erosion. Loss of agrochemicals minimized (Laird, 2008)	Catalysts carriers	

Resource Transforms International Ltd. 2009



Average Corn Yields in USA, 1900-2000

Source: USDA-NASS


Yield of Pyrolysis Water

"Bio-oil" - liquid product (condensate) of fast pyrolysis - properties:

- Water content ~20 wt% or more
- Immiscible with petroleum hydrocarbons
- No ignition (at room conditions)
- Calorific value ~60% of bunker C
- Cetane number-less than 8
- Octane number not applicable
- Ageing instability
- Thermal instability (char particulates effect)
- Non-distillable
- Contaminated by charcoal particulates of micron sizes
- Pungent odour
- Corrosive
- Acidic
- Storage disadvantages
- Combustion emission rich in CO and particulates
- Seldom homogeneous liquid in form of micro-emulsion, micellar solution

Total ion chromatograph of light organic product from hydrotreating of oligomeric lignin

1. cyclohexane 2. methylcyclohexane 3. toluene 4.propylbenzene

J. Piskorz, P. Majerski, D. Radlein and D.S. Scott. Energy & Fuels, 1989, 3, 723