

A novel TOA-glycerol based extraction- re-extraction process for the separation of chemicals produced by acidogenic fermentation of biomass

Juray De Wilde¹,

Emilie Fockedey¹, Patrick A. Gerin² Université catholique de Louvain, Belgium

juray.dewilde@uclouvain.be (1) Materials and Process Engineering Department (2) Unit of Bioengineering

Ethanol and volatile fatty acids can be produced by acidogenic fermentation

Fermentable Biomass

Concentrating ethanol and acids is necessary

- Acidogenic fermentation advantages:
 - Non-axenic conditions
 - Any fermentable biomass
 - Non-pretreated biomass
- Acidogenic fermentation limitations:

very diluted aqueous solutions (+/- 1% organic acids) produced

Separating and concentrating the molecules is essential

Development and optimisation of an efficient process for the separation of organic acids from the fermentation broth

Outline

- Separation process
- Experimental study
- Modeling
- Conclusions and perspectives

Liquid-liquid extraction seems to be the most promising technique

- Technique for the lactic acid : precipitation
 Expensive and non environment-friendly
- Other separation techniques
 - Distillation Large water flow to evaporate
 - Vapor permeation Large water flow to evaporate
 - Pervaporation
 - Large water flow to evaporate
 - No available membrane
 - Electrodialysis

Unefficient use of electric energy

• Extraction

PROMISING OPTION

Complete process based on two liquid-liquid extraction columns

Outline

- Separation process
- Experimental study
- Modeling
- Conclusions and perspectives

Distribution coefficients

Distribution coefficient:

Experimental approach

Operating parameters strongly influence the distribution coefficient

Extraction efficiency is highly influenced by the composition of the solvent

Outline

- Separation process
- Experimental study
- Modeling
- Conclusions and perspectives

Modeling

- Software simulating a countercurrent multistages liquid-liquid extraction column
 - Mass balances
 - Phase equilibria
 - o K_D
 - o Solubilities

 Data : experimental distribution coefficients and solubilities

Simulations of the extraction-reextraction 2 steps process

UCL Université catholique

Extraction degree for the 1st extraction as a function of number of stages

Extraction degree for the extraction – reextraction process

10 stages for each extraction column

Université catholique de Louvain

Which solvents are less efficient for the first extraction?

Next step: extraction with vegetable oils

solvent type	solvent	D	$C_{{ m BA(aq)}}$	literature
vegetable oil	haselnut oil	1.08	0.468	this study
	corn oil	1.08	0.462	this study
	soybean oil	1.08	0.469	this study
	olive oil	1.08	0.476	this study
	sunflower oil	0.99	0.523	ref 6
	rape seed oil	1.02	0.510	ref 6
$^{\alpha}C_{BA(aq)}$, but	vric acid concentration a	t equilibria	m in aque	ous phase.

Table 2. Distribution Coefficients of Butvric Acid for Different

low distribution coefficients

Bilgin, et al. (2006) *Distribution of butyric acid between water and several solvents*, Journal of Chemical and Engineering Data, 51, pp 1546-1550

Conclusions and perspectives

- Operating conditions and solvents screening
- Fermentation broth
- Efficiency of the process at the industrial scale
- Verification on a pilot equipment