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Growing use of corn for ethanolGrowing use of corn for ethanol
*Increases in ethanol balanced by 
increases in crop yields.

*Only 1% of global arable land used 
for biofuels crops (2006).
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U.S. Gasoline 
Demand

What Grain Alcohol Can DoWhat Grain Alcohol Can Do

Amt. % of Demand
140 B gal

Amt. % of
Year Ethanol Harvest

2006 5 B 19%

2015 15 B 38%

Data: NCGA & CFA



Herbaceous energy crops can beHerbaceous energy crops can be
part of the solutionpart of the solution

♦ Enough energy crops can be grown in US to produce 
35+ billion gal/yr of ethanol 

♦ Can be cultivated on marginal farming land, so, no 
conflict with food production

♦ Equal to corn ethanol in substituting for oil and uses 
less natural gas (0.08 BTU/BTU oil & 002 BTU/BTU gas)

♦ More effective at reducing emissions of green house 
gases (12% vs. 83% )

♦ Perennials may add to soil quality and serve as 
wildlife refuges



Cellulosic Biomass to Fermentable 
Sugars
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Grass secondary cell wall model
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Ethanol yield largely determined by Ethanol yield largely determined by 
accessibility of cellulases to celluloseaccessibility of cellulases to cellulose
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Lignin is particularly hard to remove as a barrierLignin is particularly hard to remove as a barrier
because it is hydrophobic, highly networked, and has because it is hydrophobic, highly networked, and has 
ether links & aromatics.ether links & aromatics.

Source:  Glazer, A. W., and Nikaido, H. (1995). Microbial Biotechnology. New York: W. H. Freeman, p. 340. (Wikipedia)



Source of reduced lignin biomass for this study



Lignin Synthesis Pathway in PlantsLignin Synthesis Pathway in Plants

BMR6 = reduced cinnamyl alcohol dehydrogenase (CAD)
BMR12 = reduced caffeate O-methyltransferase (COMT)

(Chen and Dixon, 2007)



Comparison of lignin contents (%w/w, db)Comparison of lignin contents (%w/w, db)

Genotype Klason Lignin ADL 

Sorghum with grain removed

bmr-12/bmr-6 10.6 1.09

bmr-6 12.4 2.16

bmr-12 12.7 2.03

Wild type 14.6 2.92Wild type 14.6 2.92

Whole sorghum plant

bmr-12/bmr-6 9.24 0.79

bmr-6 11.2 1.89

bmr-12 11.8 1.89

Wild type 13.3 2.80



Differences in lignin are significantDifferences in lignin are significant
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Genotype does not influence Genotype does not influence 
carbohydrate contentscarbohydrate contents
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Theoretical Ethanol YieldTheoretical Ethanol Yield
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Digestion AssayDigestion Assay

Pretreatment
pH = 1
Temp = 121ºC
Time = 1 hr

Digestion AssayDigestion Assay
Cellulase:  50 FPU/g glucan + 40 U of beta-glucosidase/g glucan
Temperature = 50ºC, pH = 4.8, & 100 rpm
Time = 72 hr

Analysis
Glucose
Other sugars (e.g.  Arabinose, galactose, fructose, and xylose)



Lignin does not effect acid hydrolysis Lignin does not effect acid hydrolysis 
of xylanof xylan
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Negative effect of lignin on glucose Negative effect of lignin on glucose 
yield from celluloseyield from cellulose
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Ethanol Fermentation Assay

Pretreatment conditions
pH = 1
Temp = 121°C
Time = 60 min
Neutralization:  Calcium hydroxide until pH 5.0

Simultaneous Saccharification & FermentationSimultaneous Saccharification & Fermentation
Biocatalyst = Saccharomyces cerevisiae
Cellulase:   5 FPU/g (db) + 12 U/g of beta-glucosidase
Temperature = 35°C & pH = 4.5
Time = 72 hr

Analysis
Ethanol
Nonfermentable Sugars (e.g.  arabinose and xylose)



Lignin reduces ethanol yield from Lignin reduces ethanol yield from 
cellulosecellulose
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Ammonium hydroxide pretreatment

Pretreatment conditions
Ammonium hydroxide:  4%
Temp = 170°C
Time = 20 min
Ammonia Removal:  evaporated 48 hr at ambient temp

Simultaneous Saccharification & FermentationSimultaneous Saccharification & Fermentation
Biocatalyst = Saccharomyces cerevisiae D5A
Cellulase:   5 FPU/g (db) + 12 U/g of beta-glucosidase
Temperature = 35°C & pH = 4.5
Time = 72 hr

Analysis
Ethanol
Nonfermentable Sugars (e.g.  arabinose and xylose)



SSF of ammonium hydroxide pretreated SSF of ammonium hydroxide pretreated 
stacked & wildstacked & wild--type sorghum samplestype sorghum samples
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Comparison of ethanol and feed yieldsComparison of ethanol and feed yields

Genotype Lignin 
(%wt/)

Ethanol Eff1

(% of max)
IVDMD2

(% of max)

Stacked 10.6 54 86

bmr-6 12.4 44 78

bmr-12 12.7 43 82

Wild-type 14.6 37 75

1B.S. Dien, G.S. Sarath, J.F. Pedersen, D.L. Funnell, S. Sattler, J.J. Toy, & N.N. Nichols
2H. M. Dann, A. M. DiCerbo, J. F. Pedersen, and R. J. Grant (estimated from graph)



Prior reported resultsPrior reported results
♦ Determined that two bmr mutants in sweet sorghum improved 

enzymatic saccharificaiton by 30-60%.  AI Saballos, W Vermerris, and G Ejeta.  
(2007).  Development of Brown Midrib Sweet Sorghum as a Dual-Source Feedstock for 
Ethanol Production.  Abstract

♦ Strong correlation found for enzymatic sugar yield vs. lignin in alfalfa 
engineered for reduced lignin.  F Chen & RA Dixon. (2007) Lignin modification 
improves fermentable sugar yields for biofuel production. 

Sugar release 
vs. Alfalfa 
lignin content

♦ Numerous studies detail advantages of bmr mutations for increasing 
forage digestibility & bmr sorghum seed is produced commercially.  One 
example:  AL Oliver, JF Pedersen, RJ Grant, & TJ Klopfenstein. (2005) Comparative Effects 
of the Sorghum bmr-6 and bmr-12 Genes:  I. Forage Sorghum Yield and Quality.

lignin content



SummarySummary

♦ Chemical plant composition for near-isogenic sorghum lines 
carrying bmr were similar, except for lignin content.

♦ Glucose and ethanol yields for sorghum biomass samples 
pretreated with low severity dilute-acid were negatively 
correlated with Klason lignin content and differences in 
ethanol conversion efficiencies ranged over 20%.ethanol conversion efficiencies ranged over 20%.

♦ Lower lignin mutants also showed improved ethanol 
conversion efficiencies when pretreated using a higher 
temperature ammonium hydroxide pretreatment – the 
maximum efficiency for glucan conversion was 77%.
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