

USDA - ARS - National Center for Agricultural Utilization Research

Conversion of Lower Lignin Mutants of Sorghum bicolor to Ethanol

> Michael Cotta and Bruce Dien Fermentation Biotechnology Research

Bioenergy – II: Fuels and Chemicals from Renewable Resources Rio de Janeiro, Brazil March 8-13, 2009

Growing use of corn for ethanol

What Grain Alcohol Can Do

Data: NCGA & CF

U.S. Gasoline Demand 140 B gal

Herbaceous energy crops can be part of the solution

- Enough energy crops can be grown in US to produce 35+ billion gal/yr of ethanol
- Can be cultivated on marginal farming land, so, no conflict with food production
- Equal to corn ethanol in substituting for oil and uses less natural gas (0.08 BTU/BTU oil & 002 BTU/BTU gas)
- More effective at reducing emissions of green house gases (12% vs. 83%)
- Perennials may add to soil quality and serve as wildlife refuges

Cellulosic Biomass to Fermentable Sugars

Courtesy of Hans Jung

Grass secondary cell wall model

Ethanol yield largely determined by accessibility of cellulases to cellulose

(adapted from Mosier)

Source: Glazer, A. W., and Nikaido, H. (1995). Microbial Biotechnology. New York: W. H. Freeman, p. 340. (Wikipedia)

Source of reduced lignin biomass for this study

CROP SCIENCE, VOL. 46, JANUARY-FEBRUARY 2006

Registration of Seven Forage Sorghum Genetic Stocks Near-Isogenic for the Brown Midrib Genes *bmr*-6 and *bmr*-12

Seven forage sorghum [Sorghum bicolor (L.) Moench] genetic stocks, N592 to N598, (Reg. no. GS-121–GS-127, PI639702– PI639708) near-isogenic to their wild-type counterparts for the brown midrib genes *bmr*-6 and *bmr*-12 were developed jointly by the USDA-ARS and the Agricultural Research Division, Institute of Agriculture and Natural Resources, University of Nebraska, and were released in January 2005.

> J.F. Pedersen,* D.L. Funnell, J.J. Toy, A.L. Oliver, and R.J. Grant

Lignin Synthesis Pathway in Plants

BMR6 = reduced cinnamyl alcohol dehydrogenase (CAD) BMR12 = reduced caffeate O-methyltransferase (COMT)

(Chen and Dixon, 2007)

Comparison of lignin contents (%w/w, db)

Genotype	Klason Lignin	<u>ADL</u>		
Sorghum with grain removed				
bmr-12/bmr-6	10.6	1.09		
bmr-6	12.4	2.16		
bmr-12	12.7	2.03		
Wild type	14.6	2.92		
Whole sorghum plant				
bmr-12/bmr-6	9.24	0.79		
bmr-6	11.2	1.89		
bmr-12	11.8	1.89		
Wild type	13.3	2.80		

Differences in lignin are significant

Total Composition

Genotype does not influence carbohydrate contents

Theoretical Ethanol Yield

Digestion Assay

Pretreatment

pH = 1 Temp = 121°C Time = 1 hr

Digestion Assay

Cellulase: 50 FPU/g glucan + 40 U of beta-glucosidase/g glucan Temperature = 50° C, pH = 4.8, & 100 rpm Time = 72 hr

Analysis

Glucose Other sugars (e.g. Arabinose, galactose, fructose, and xylose)

Lignin does not effect acid hydrolysis of xylan

Negative effect of lignin on glucose yield from cellulose

Ethanol Fermentation Assay

Pretreatment conditions

pH = 1 Temp = 121°C Time = 60 min Neutralization: Calcium hydroxide until pH 5.0

Simultaneous Saccharification & Fermentation

Biocatalyst = Saccharomyces cerevisiae Cellulase: 5 FPU/g (db) + 12 U/g of beta-glucosidase Temperature = $35^{\circ}C \& pH = 4.5$ Time = 72 hr

Analysis

Ethanol Nonfermentable Sugars (e.g. arabinose and xylose)

Lignin reduces ethanol yield from cellulose

Ammonium hydroxide pretreatment

Pretreatment conditions

Ammonium hydroxide: 4% Temp = 170°C Time = 20 min Ammonia Removal: evaporated 48 hr at ambient temp

Simultaneous Saccharification & Fermentation

Biocatalyst = Saccharomyces cerevisiae D5A Cellulase: 5 FPU/g (db) + 12 U/g of beta-glucosidase Temperature = $35^{\circ}C \& pH = 4.5$ Time = 72 hr

Analysis

Ethanol Nonfermentable Sugars (e.g. arabinose and xylose)

SSF of ammonium hydroxide pretreated stacked & wild-type sorghum samples

Comparison of ethanol and feed yields

<u>Genotype</u>	<u>Lignin</u> (%wt/)	Ethanol Eff ¹ (% of max)	<u>IVDMD</u> ² (% of max)
Stacked	10.6	54	86
bmr-6	12.4	44	78
bmr-12	12.7	43	82
Wild-type	14.6	37	75

¹B.S. Dien, G.S. Sarath, J.F. Pedersen, D.L. Funnell, S. Sattler, J.J. Toy, & N.N. Nichols ²H. M. Dann, A. M. DiCerbo, J. F. Pedersen, and R. J. Grant (estimated from graph)

Prior reported results

- Determined that two bmr mutants in sweet sorghum improved enzymatic saccharification by 30-60%. Al Saballos, W Vermerris, and G Ejeta. (2007). Development of Brown Midrib Sweet Sorghum as a Dual-Source Feedstock for Ethanol Production. Abstract
 - Strong correlation found for enzymatic sugar yield vs. lignin in alfalfa engineered for reduced lignin. F Chen & RA Dixon. (2007) Lignin modification improves fermentable sugar yields for biofuel production.

 Numerous studies detail advantages of *bmr* mutations for increasing forage digestibility & bmr sorghum seed is produced commercially. One example: AL Oliver, JF Pedersen, RJ Grant, & TJ Klopfenstein. (2005) Comparative Effects of the Sorghum bmr-6 and bmr-12 Genes: I. Forage Sorghum Yield and Quality.

Summary

- Chemical plant composition for near-isogenic sorghum lines carrying *bmr* were similar, except for lignin content.
- Glucose and ethanol yields for sorghum biomass samples pretreated with low severity dilute-acid were negatively correlated with Klason lignin content and differences in ethanol conversion efficiencies ranged over 20%.
- Lower lignin mutants also showed improved ethanol conversion efficiencies when pretreated using a higher temperature ammonium hydroxide pretreatment – the maximum efficiency for glucan conversion was 77%.

Acknowledgments

Grain, Forage & Bioenergy Research Unit , USDA/ARS, Lincoln, NE , USA

> Gautam Sarath Jeff Pedersen Deanna Funnell Scott Sattler JohnToy

Fermentation Biotechnology Research Unit, NCAUR, USDA/ARS, Peoria, IL, USA

> Patricia O'Byran Loren Iten Nancy Nichols