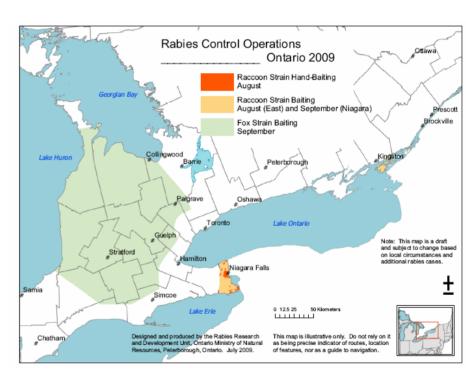
Process Scale-up and Optimization for Production of High Efficacy Order Rabies Vaccine

Amine Kamen VT III, Nuevo Vallarta, Mexico June 9, 2010

Outlines

- Introduction
- Process development
- Field trials results
- Conclusions and Perspectives



Rabies: Old Disease New Challenges

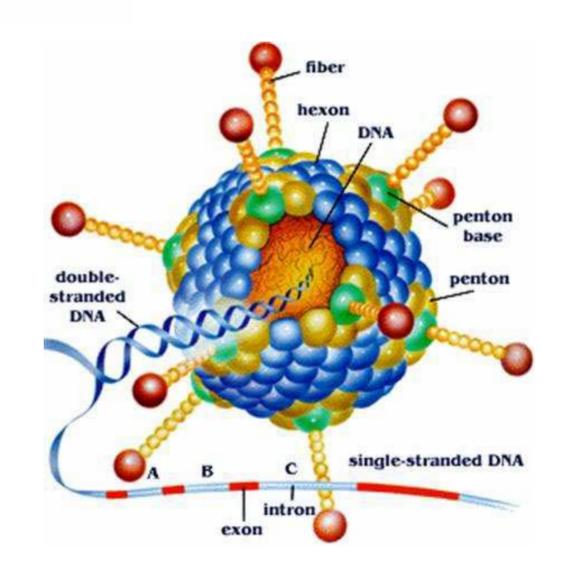
- Rabies is an important causative agent of disease resulting in an acute infection of the nervous system and death
- > Rabies remains endemic throughout the world.
 - 55,000 deaths per year (WHO)
 - Major Public health issue
- Global reservoir in domestic and wildlife animals including dogs, foxes, raccoons, skunks, coyotes, mongooses and bats
- Oral Rabies Vaccine (ORV) is a publicly acceptable methodology that may be applied on a broad geographic scale in specific wildlife reservoirs

- ✓ Between 1958 and 1990 there was an average of 1,500 confirmed cases of wildlife rabies per year.
- ✓ Since 1989 OMNR has used oral vaccines as a tool to control wildlife rabies. Program has been very successful.
- ✓ In 2009 there were only 16 confirmed cases in terrestrial mammals. 50% in skunks.
- ✓ Available oral rabies vaccines were ineffective in skunk.
- ✓ Control of rabies in wildlife remains an important challenge.
- ✓ A human adenovirus rabies glycoprotein recombinant vaccine (AdRG1.3) was developed for oral vaccination: *Yarosh et al. 1996, Vaccine*
- ✓ AdRG1.3 rabies vaccine is produced by cell culture process using HEK 293 cell.

Wildlife Rabies Control in Ontario

Source: Ontario Ministry of Natural Resouces

> Large quantity of vaccine is required for field trials to assess its efficacy.

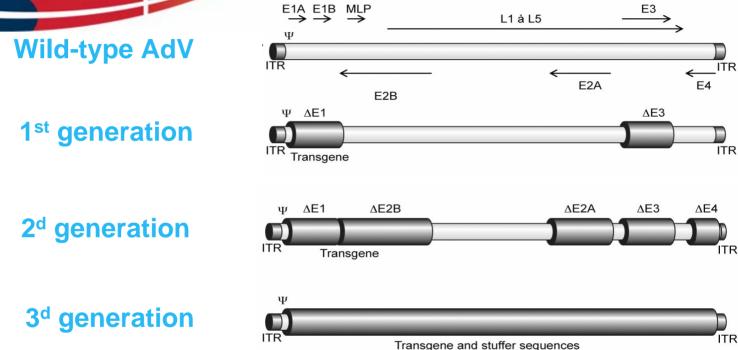

Institut de recherche en biotechnologie Biotechnology Research Institute

Vector

Well characterized Broad tropism Weakly pathogenic Respiratory track

Manufacturing

High titers
High stability
Well characterized up- &
downstream bioprocesses



CNRC-NRC

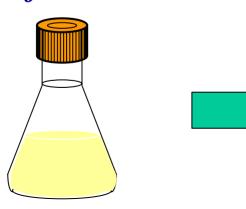
Institut de recherche en biotechnologie

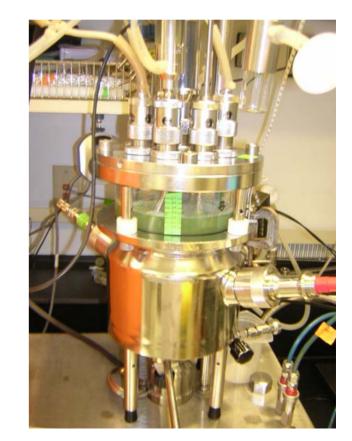
Biotechnology
Research Institute

From first to third generation AdV

- ✓ Reduction of immunogenicity & toxicity
- ✓ Improved transgene capacity
- ✓ Lower production yield & increased complexity of production 6 system

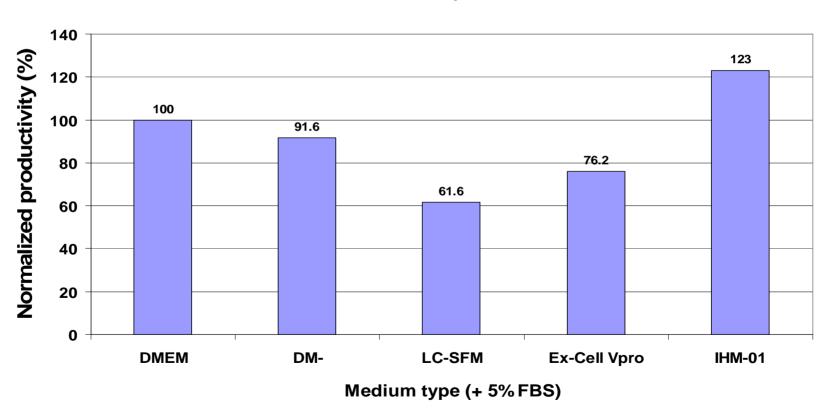
Institut de recherche en biotechnologie Biotechnology Research Institute


HEK293 a platform for viral vectors and vaccine manufacturing

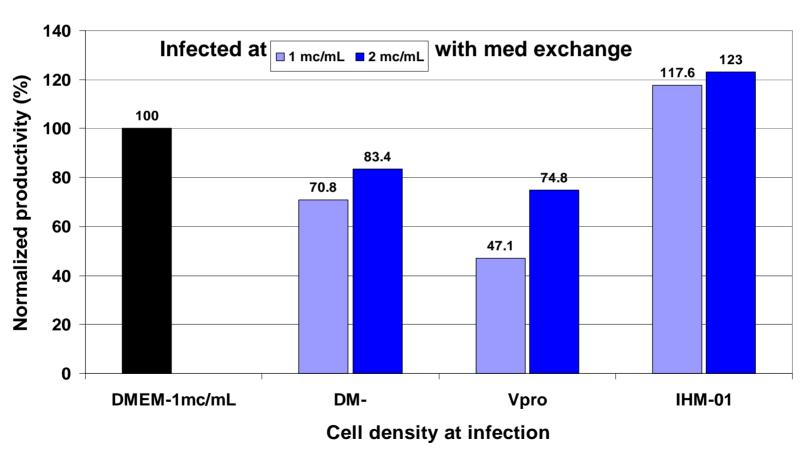

Production & Purification	Application	Scale	References	
Adenovirus	vaccines	500L	Kamen et al., J. gene medicine, 2004 P21	
Gutless AdV	Muscular Dystrophy	3L	Dormond et al., Biotechnol.Bioeng, 2009	
AAV	Interferon	3L	Durocher et al., VirMet, 2007. P9	
Retrovirus	Marker	3L, perfusion	Ghani et al., Biotechnol.Bioeng, 2006	
Lentivirus	Marker	3L, perfusion	Ansorge et al. JGM 2009.	
Reovirus	Oncolytic	100L	Transfiguration et al. J.PBA, 2008 P21	
Influenza H1N1	Vaccine	3L	Le Ru et al. Vaccine, 2010 P20 7	

Improvement of Production yield and Process Robustness

- 1. Selection of a basal medium
- 2. Medium development
- 3. Increase in cell density
- 4. Streamlining the Process
- → Transfer to bioreactor

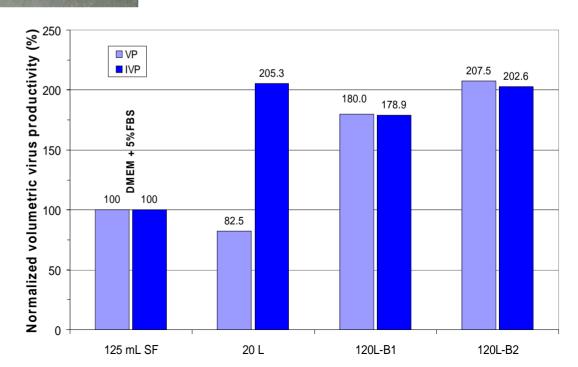


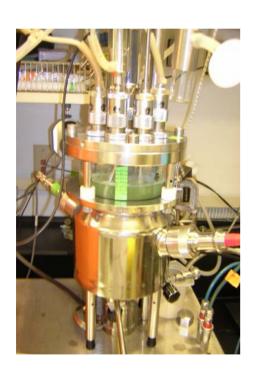
CNRC-NRC Institut de recherche en biotechnologie Biotechnology Research Institute

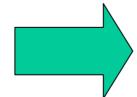

Selection of basal medium

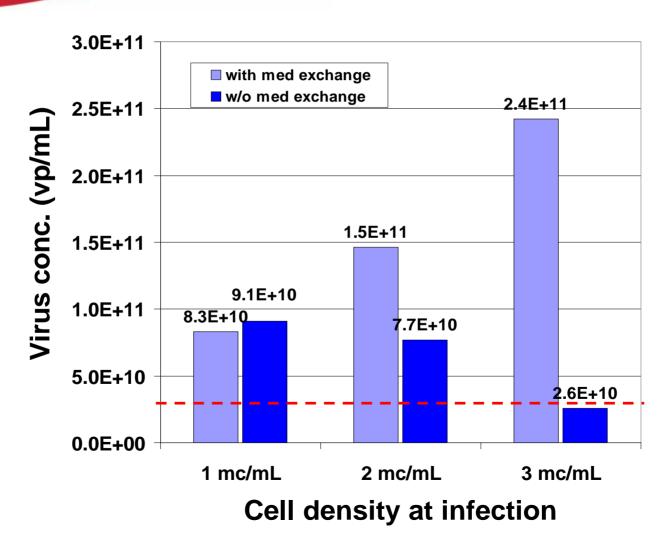
with med exchange

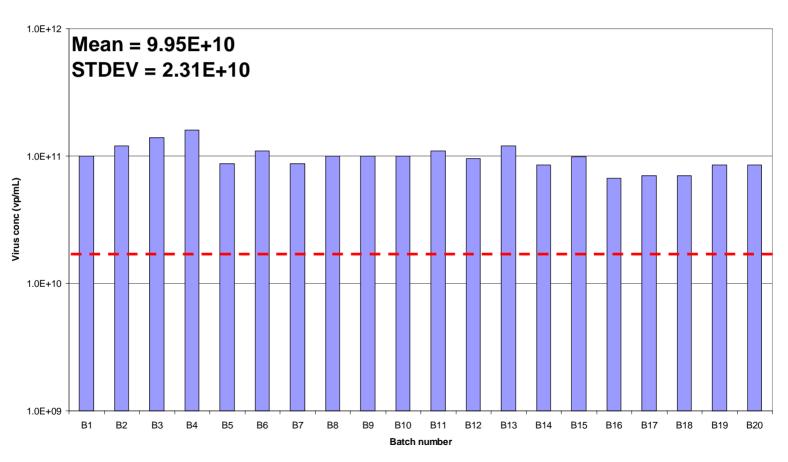
Institut de recherche en biotechnologie
Biotechnology
Research Institute


Effect of cell density at infection

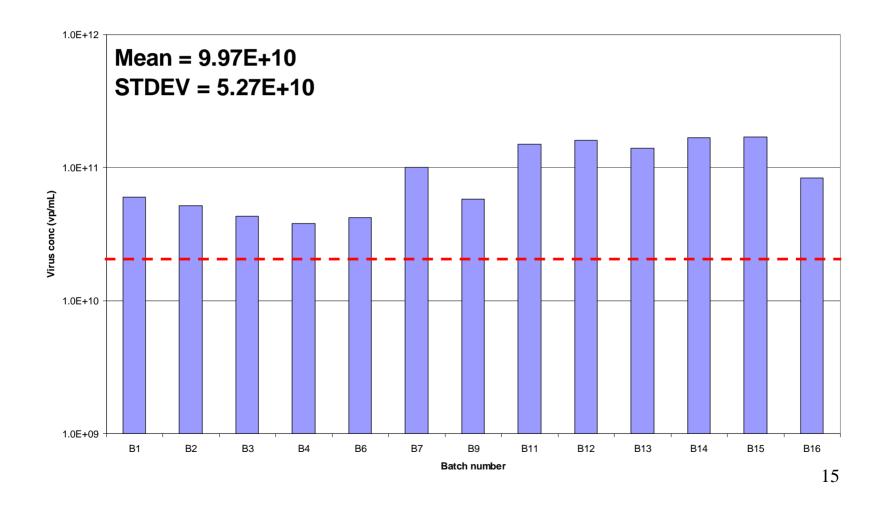



Production of AdRG1.3 in 180 L bioreactor with medium exchange


More Robust Production Process for Manufacturing?



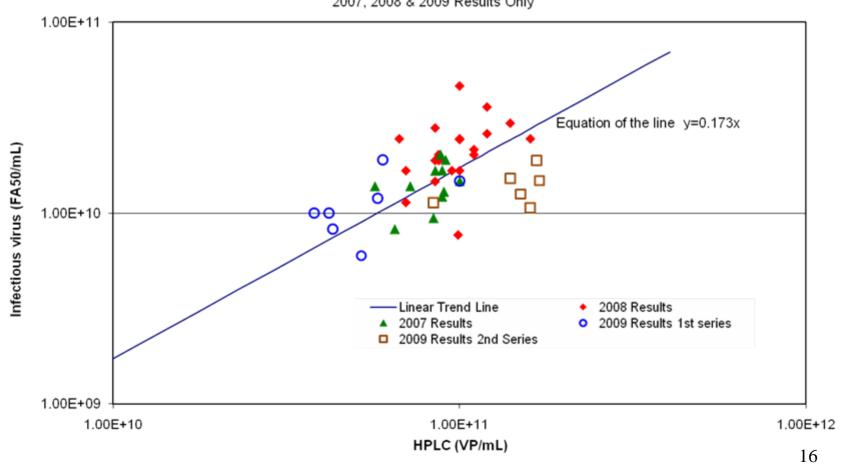
IHM-02, resulted in production w/o medium exchange



Production data 2008 160L batch

CNRC-NRC Institut de recherche en biotechnologie Biotechnology Research Institute

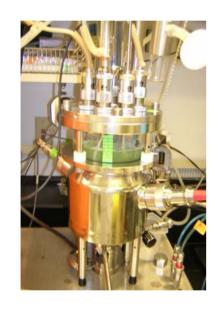
Production data 2009 500 L batch

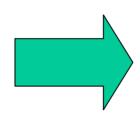


Ratio IVP vs VP

Institut de recherche en biotechnologie Biotechnology Research Institute

Infectious Virus Titre (FA50/mL) vs HPLC Virus Particle Assay




Concluding Remarks: Process development

- Improved production process resulting in
 - 50% saving in material expenses and
 - 25% reduction in labor costs
 - More robust process
- Improved AdRG1.3 viral yield by a factor of three through optimization of cell culture media

CNRC-NRC Institut de recherche en biotechnologie Biotechnology Research Institute

Successful Scale-up of AdV-based ORV vaccine

~ 12000L of AdRG1.3 (ONRAB) at 10¹¹ VP/mL produced for field trials

Vaccine-filled baits are distributed throughout the area by airplanes.

Key component in the baits is adenovirus type 5 expressing rabies glycoprotein (AdRG1.3).

Source: Ontario Ministry of Natural Resouces

Institut de recherche en biotechnologie Biotechnolog Research Ins

Rabies vaccine bait developed by Ontario Ministry of Natural Resources

Aerial baiting is part of Ontario's rabies control program.

Aerial baiting of rabies vaccine

Baits will be distributed by plane.

Aerial baiting is done using a bait machine.

20

Vaccine efficacy in Raccoons

Table 5. ONRAB® vaccine efficacy in raccoons in SW Ontario, Canada, that ate ONRAB baits in areas baited at 75, 150, 300, and 400 ONRAB® baits/km² during 2006 and 2007.a

Bait density (baits/km²)	ELISA+ (n)	ELISA- (n)	Sample size (n)	ELISA+ (%)
75	192	44	236	81.4
150	215	58	273	78.8
300	277	40	317	87.4
400	240	27	267	89.9
Total	924	169	1,093	

^a Raccoons that ate ONRAB baits as determined by the presence of tetracycline in second premolar teeth; ELISA+ = ELISA positive; ELISA[minus] = ELISA negative; ELISA+ (%) = percentage of raccoon sera samples from raccoons that consumed a bait that were ELISA positive and is an indication of vaccine efficacy in raccoons.

Rosatte et al. (2009) Journal of Wildlife Diseases, 2009, 45:363-374

Vaccine efficacy in Raccoons (2010)

The rabies reporter

MNR Publication 51709 Volume 21, Number 1

January - March 2010

Rabies in the first quarter: (almost) nothing to report

There isn't much that can be said about the rabies cases in Ontario during the first three months of 2010. This is largely because there was only one (no that's not a typo) confirmed case of rabies in the province during this quarter.

New facilities for commercial manufacturing Artemis
Technologies Inc.

Conclusion

- Successful process optimization and scale-up for manufacturing of an adenovirus-base ORV
- Production of >> 5 millions baits for field trials
- Successful technology transfer for manufacturing of adenovirus-based ORV
- Highly efficient ORV based on 2006/07 field trials
- This ORV-related program has potentially broad appplications in developing countries where most of the 55,000 human rabies cases per year are reported by WHO

Project Team Chun Fang Shen Stephane Lanthier Danielle Jacob Johnny Montes Olivier Henri Hélène Coelho Robert Voyer Ricardo Ochoa Louis Bisson Alice Bernier

Artemis Technologies
Andrew Beresford
Alex Beath

Other Departments and Agencies
OMNR
CFIA

Contents lists available at ScienceDirect

Vaccine

In vitro and in vivo genetic stability studies of a human adenovirus type 5 recombinant rabies glycoprotein vaccine (ONRAB)

M. Kimberly Knowles*, Danielle Roberts¹, Sheona Craig, Mary Sheen, Susan A. Nadin-Davis, Alexander I. Wandeler

Vaccine 27 (2009) 6619-6626

Contents lists available at ScienceDirect

Vaccine

journal homepage: www.elsevier.com/locate/vaccine

Safety studies on an adenovirus recombinant vaccine for rabies (AdRG1.3-ONRAB®) in target and non-target species

M. Kimberly Knowles a, +, Susan A. Nadin-Davis a, Mary Sheen a, Rick Rosatte b, Rudi Mueller c, Andrew Beresford d

Ottawa Laboratory Fallow field, Canadian Food Inspection Agency, Ottawa, Ontario, Canada

Ontario Ministry of Natural Resources, Rabies Research and Development Unit, Trent University, DNA Building, 21 40 East Bank Drive, Peterborough, Ontario, K.Y. 788, Canada

^c Toxicology Research Division, Health Products and Foods Branch, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, KIA CL2, Canada

⁴ Artemis Technologies Inc., Guelph, Ontario, Canada