Determination of the Blend Level of Mixtures of Biodiesel with Mineral Diesel Fuel Using Near Infrared Spectroscopy

Pacheco Filho, J G; Pimentel, M F; Stragevitch,

Federal University of Pernambuco - BRASIL

Chemical Engineering Department

Teixeira, L S G; Ribeiro, G M G

University of Salvador- Bahia

Cruz, R S, Santa Cruz State University - Bahia

FOSSIL FUEL PROBLEMS

Ref. Smith and Petela, The Chemical Engineering, 1992.

Chemical Engineering Department - UFPE (Pacheco Filho, J G)

GREENHOUSE EFFECT North Pole Cap Melting

GREENHOUSE EFFECT

Flood Areas and Crops

Petrobras - Norberto

KATRINA Hurricane

Very Dry Days in Amazon Rain Forests - October 2005

Pescadores entre milhares de peixes mortos no Paraná do Manaquiri (a 150 km de Manaus), um braço de rio agora reduzido a um córrego.

http://www.greenpeace.org.br/amazonia/?conteudo _id=2328&sub_campanha=0 Embora seja uma das regiões onde há mais disponibilidade de água do mundo, na Amazônia, a maior parte da população não tem acesso à água tratada. Foto: Celso Junior/AE

http://www.estadao.com.br/ext/ciencia/agua/galeria.htm?pg=1

Biodiesel

Oil Source: Vegetable Oils and Animal Fats

Alcohol Source: Methanol or Ethanol

Transesterification

Renewal Fuel, Biodegradable

Less emission of: Particulates, SOx, CO₂

Addition of Biodiesel in Mineral Petroleum Diesel

BRASIL

- > 2% in 2005 (B2), Mandatory in 2008
- > 5% in 2013

PROBLEMS

- > Guarantee real 2% or 5% content
- > Presence of raw vegetable oil
- > High cost of analysis
- Many sources of oils: Soybean oil, used oil, palm oil, castor oil, animal fat

Infrared Spectroscopy

Advantages:

- ✓ Fast
- ✓ Does not need Pre-Treatment
- ✓ Non Destructive
- ✓ Can be used on line

MIR - 4.000 - 400 cm-1 (MEDIUM INFRARED)

All functional Groups are Detectable

NIR - 10.000 - 4.000 cm-1 1.000 - 2.500 nm

Detect Combinations of compounds

Groups: C-H, O-H, N-H, C=O

Multivariable Modelling

To Obtain
Correlation between Infrared and Primary Methods

To Predict Information

Literature Review for Alternative Analysis of Biodiesel

Knothe 2001: 1H-NMR for BD in petrodiesel

Knothe 1999: content of soybean oil and its biodiesel

Knothe 2001: content 0 to 100% of biodiesel in Petrodiesel

Zagonel 2004: content of soybean biodiesel in a mixture of soybean oil to track reaction conversion

OBJECTIVES

Determine Biodiesel Content in Petrodiesel in the range (2 to 5%)

Using: MID Infrared or Near Infrared Spectra Multivariable Calibration

Determine the presence of raw vegetable oil

Methodology Sample Preparation

Blends of oils and esters in Mineral Diesel

Factorial Design: 2 factor: ester and oil 0 to 5 vol. %
Central point

Soybean Oil
Castor Oil
Used Frying Oil

(Soybean oil) Ester (Castor oil) Ester (Used Frying oil) Ester

26 Blends for Calibration + 15 Blends for External Model Validation

Methodology Apparatus and Calibration

Perkin-Elmer Spectrum One FTIR spectrometer

Sampling ATR for MID (4000 to 600 cm⁻¹)
Sampling 1 mm optical length for NIR (7802500 nm)

Unscrambler 9.0 (CAMO)
Principal component analysis (PCA)
Partial least-squares (PLS) regression

Full cross-validation to define no. of factors
Significant regression coefficients by Martens
Criteria

Results MID spectra: Petrodiesel, oils, esters

- > 1750 cm⁻¹ carbonyl bands: overlapped peaks
- Castor Oil and Ester: around 3333 cm⁻¹(deformation of O-H bonds)

Results NIR spectra: Petrodiesel, oils, esters

Results Principal Component Analysis

- > 1700-1800 cm-1 Carbonyl (first derivative spectra)
- > Groups well classified when: Ester/Oil ratio < 5
 Oil/Ester ratio < 5

Results Partial Least Squares (PLS) Models

> Predict the Content of Biodiesel in Petrodiesel

Calibration (26 Blends)			
Spectral Region	RMSECV (%, v/v)	R	Number of factors
MID	0.28	0.990	3
NIR	0.27	0.990	6
Prediction by independent set of data (15 Blends)			
Spectral Region	RMSEP (%, v/v)	R	Relative average errors (%)
MID	0.25	0.986	10.2
NIR	0.18	0.994	6.7

Results Partial Least Squares (PLS) Models

> Significant Regression Coefficients chosen by Marten's Criteria

Results Partial Least Squares (PLS) Models

> Good Correlations for Predicted vs. Reference values

Conclusions

PSL Model based on MID and NIR spectra Can Predict Biodiesel content in Conventional diesel blends (0 to 5 vol. %)

Rapid and low Cost Method for Monitoring Quality of Biodiesel Blends

Biodiesel from different origins: soybean oil, castor oil, used frying oil

PCA of MID (1700-1800cm⁻¹) was suitable to identify

- > Petrodiesel from Blends of Biodiesel
- > Presence of Raw oil in Biodiesel Blends

Authors's Universities

