COLCIENCIAS

BRICK FURNANCES – HOFFMAN TYPE: TECHNICAL FEASIBILITY OF INCINERATING MUNICIPAL SOLID WASTES (MSW)

Cesar Augusto Garcia U., MSc. Juan Carlos Moreno P., PhD.

BIOENERGY - I From Concept to Commercial Processes

March, 2006 Tomar, Portugal

COLCIENCIAS

AKNOWLWDGEMENTS SCIENTIFIC & FINNANCIAL SUPPORT

- Department of Chemistry Universidad de los Andes - Bogotá - Colombia
- Faculty of Engineering Universidad de los Andes - Bogotá – Colombia
- Environmental Catalysis Investigation Group -Universidad de Antioquia – Medellín - Colombia
- COLCIENCIAS
- INAMCO LTDA

CONTENTS

- INTRODUCTION
- COLOMBIAN URBAN WASTE CHARACTERISTICS
- CHARACTERISTICS AND REQUIREMENTS OF THE INCINERATION PROCESS.
- PROPOSED PROBLEM.
- CHARACTERISTICS OF THE BRICK MANUFACTURING PROCESS
- AIR POLLUTION EMISSION LEVELS.
- STABILIZATION/SOLIDIFICATION OF ASHES IN CLAYS
- COLOMBIAN ASHES AND CLAY CHARACTERISTICS
- RESULTS OF ENCAPSULATION TESTS
- CONCLUSIONS

VIEW OF TIPICAL DISPOSAL GARBAGE PLACE IN MANY ZONES IN COLOMBIA

Some cities In Colombia use landfills to waste disposal but is necesary become to use other options.

TIPICAL TREATMENT OPTIONS TO MUNICIPA SOLID WASTES (MSW)

Alternative	Descriptión	Advantages	Disadvantages
Aerobic/Anaerobic Digestion	Is efficient to allow the natural degradation of organic wastes	 Gas generation and/or fertilize material are produced 	 Its aplication is only possible to organic material.
Landfills	Is a controlled form de un terreno para el depósito de desechos clasificados	 Can be used in many kinds of wastes within previous treatment. 	 Larger terrain areas is demmand. Gases and leaching control is mandatory. Operation is expensive.
Incineration	Is a termic destruction of wastes in oxigen presence and high temperature.	 Drastic volume reduction. Convenient to medical and industrial wastes. Recovery Energy is possible. No need larger areas. 	 High initial investments. High Emission control efficiencies are necesary. Uncontrolled emisions are high risk. Operation and monitoring are expensive.
3R	Reduce, Reuse and/or Recycling of wastes.	 Environmentally Friendly. 	 Limited to some kind of wastes. Economically could be unpractical and expensive.

Perhaphs theirs disadvantages, the MSWI, could be the best option to MSW treatment because destroy and minimize the waste to disposal.

URBAN SOLID WASTE CHARACTERISTICS IN BOGOTA COLOMBIA

(Per each 100 kg)

Characteristic	E MINISTRY	LANDFILL OPERATOR	OTHER	UNIANDES	Average
Volatile material (kg)	44.54	50.87	44.42	48.23	47.02
Moisture (kg)	39.20	34.62 39.32 38.76		38.76	37.98
Dry weight (kg)	60.79	65.38	60.68	61.22	62.02
Fixed carbon (kg)	5.12	4.65	4.97	4.43	4.79
No Combustible (kg) 10.43		9.60	10.73	8.50	9.82
Heat Power (kcal/kg)	eat Power kcal/kg) 2,775.60		2,770.62	3,238.69	2,933.32

Characterization of MSW composition

PROPOSED PROBLEM

- High moisture waste incineration is a technological challenge, due to the great fuel requirements for making the process viable.
- The problems to be solved are:
 - High costs of fuel
 - High levels of pollutant emissions
 - Adequate final disposal of ashes
 - To obtain reliable and representative information about wastes

The combustion process carried out in brick manufacturing furnaces is similar to the incineration process and it allows heat reuse.

CHARACTERISTICS OF SOLID WASTE INCINERATION PROCESS

TECHNICAL REQUIREMENTS OR CONTROL VARIABLES NEEDED TO DESTROY WASTES IN AN INCINERATOR

(Brunner 1993, Mckay 2001)

- Temperature: In combustion chamber 850 °C, In postcombustion chamber 1200 °C.
- Time: Residence postcombustion chamber 2 seconds
- Turbulence: Expresed as Reynolds number Re > 10000 (50000); (Re = v*De/v)

% O₂: >6 % v/v

INCINERATION PROCESS RESIDUES

•	Particulate Matter	PM
•	Sulfur oxides	SOx
•	Carbon monoxide	СО
•	Nitrogen oxides	NOx
EMISSIONS •	Heavy metals	HM
•	Dioxins and furans	PCDD/Fs
•	Halogenated acids	HA
•	Incomplete combustion products	ICP's
•	Volatile organic compounds VOCs	VOC's

SOLID WASTE

- Bottom ashes
- Volatile ashes

Waste incineration requires a technology with appropriate conditions of temperature, oxidant fluxes and residence times to eliminate toxic compounds. Also, it should have an emissions control system.

CHARACTERISTICS OF A HOFFMAN FURNACE

Basic compounds of a Hoffman Furnace adapted for waste incineration

TIPICAL BRICKS ACOMODATION INTO THE FURNANCE

COMPARISON BETWEEN THE BRICK MANUFACTURING PROCESS AND WASTE INCINERATION

CHARACTERISTICS OF BRICKS MANUFACTURE PROCESS IN A HOFFMAN FURNACE

TYPICAL TEMPERATURE CURVE IN A HOFFMAN FURNACE

FAVORABLE ASPECTS OF A HOFFMAN FURNACE AS WASTE INCINERATOR

- Waste coincineration by mineral carbon firing without adittional fuel.
- Suitable combustion conditions such as high temperatures in combustion chamber (1100 °C), gas residence time (4-6 second), and oxigen excess (12-16%).
- Possibility to adapt postcombustion chamber.
- Inhibiton of PCDD/Fs formation during coincineration process due to 1% sulfur content in mineral carbon. (*Tuppurainen y otros 1997*).
- Inhibiton of the catalytic action of metal ions caused by the bricks in the firing process.
- Ashes and clay compatibility (Ellias, 2002).

AIR POLLUTION CONTROL SYSTEM SELECTED

ESPECIFICACION	ES TÉCNICAS DE LAVADOR DE GA	SES ANEXO Nº_1_			
Lest Excertence Cali, Abril 7 de 2003 Señores: INAMCO Att: Ing. Cesar Augusto García E-Mail: inamco@empresario.com.co Tel: 071-2631334 Fax: 071-2631334 Ciudad Bogota PARÁMETROS DE FUNCIONAMIENTO SOLICITADOS Caudai 4704 CEN 122 Fax: 071-2631334 Ciudad Bogota Material de Colectar Cenizas de Carbon CARACTERISTICAS DEL LAVADOR OFRECIDO Tamaño 270 Volumen de Gases (V1) 4704 Temp. De Gases (T1) 122 Temp. De Gases (T2) 122 Caida Presión Lav. (SP) 6 Agua de Fábrica (A1) 0.5 Agua de Fábrica (A2) 0 Agua con Contaminante (A3) 0.5 Particulas contaminantes retenidas (P2) 13.86 Agua contaminantes no retenidas (P3) 0.14 Lbs/Hr Particulas contaminantes retenidas (P3) 0.14 Particulas contaminantes no retenidas (P3) 0.14 Lbs/Hr <	THEM # 4 CANT: 1 SAREF: Javador de gasses N/REF: 03-134 COTIZACIÓN P REV 0121 FECHA DEL PEDIDO FECHA DEL PEDIDO ESQUEMA DE CONEXIONES CONEXIONE	Era ANO. 10445 ACOP Tel: 57-2-6644703 / 6914444 FAX: 57-2-66449036 E-MAIL: coinitidagemcali.net.co Call-Colombia DIMENSIONES GENERALES			
Vălvula de Flota en Tanque de Lodos (7 Vălvula de Drenaje Tanque de Lodos (7 MATERIALES PARA CONSTRUCCIÓN DEL LAN Cuerpo: ACERO ASTMA-36 (7 ACERO INOX Estructura: ACERO ASTMA-36 (7 ACERO INOX Tanque de Lodos: ACERO ASTMA-36 (7 ACERO INOX Tanque suministro: ACERO ASTMA-36 (7 ACERO INOX	OTROS: OTROS: OTROS: OTROS:	FACTORES DE CONVERSIÓN $1^{+}H_2O = 25,4 \text{ mm } H_2O$ $1^{-}Psi = 27,7^{-}H_2O$ $1^{-}CFM = 1,7 \text{ m}^3/m$ $1^{-}F = 915^{-}C+32$			
ACLARACIONES TÉCNICAS: 1- la bomba de lodos que souministra Coin ltda es para recircultar el agua desde el tanque de lodos al tanque de agua. La disposicion final de los lodos que se soumulan en la parta inferiror del tanque de lodos sera por cuenta de INAMCO					

AIR POLLUTION EMISSION LEVELS & ENVIRONMENTAL FEASIBILITY

POLLUTANT	EMISSION LEVEL (mg/m³)	STANDARD (mg/m³)	FEASIBILIYT
PM SOx NOx CO HCI HF PCDD/Fs VOC's	36.7 147.2 104.7 82.4 32.1 1.4 4.2*10 ⁻⁶ 17.4	40 250 200 100 60 6 20*10 ⁻⁶ 30	ОК ОК ОК ОК ОК ОК ОК

Incineration of MSW in Hoffman ovens is possible, but is necessary an air pollution control system to install.

TEST ILUSTRATION AND PROCESS

MSW ACOMODATION IN THE OVEN

MSW ACOMODATION IN THE OVEN

ASHES AFTER COINCINERATION PROCESS

TEST ILUSTRATION AND PROCESS

Air Pollution Control System and stack monitoring

Emission Stack Sampler

Stack Sampler and Emission Test

TREATMENT AND DISPOSAL OF ASHES BY ENCAPSULATION IN CLAYS

BACKGROUND: Stabilization–Solidificación processes (SS).

Sun, Chang (2001, 2003)

Treatment of heavy metals contained in catalytic craking waste of petroleoum refination processs using clays. The obtained material was used to produce bricks.

Stabilization mechanisms proposed

ASH TREATMENT AND DISPOSAL BY ENCAPSULATION IN PROCESS CLAYS

The proposed mechanism establishes two stages:

Adsortion-Ionic exchange: Temperatures below 600 °C

Final incorporation: Temperatures above 1000 °C

Typical temperature profile - Sun (2003)

CHARACTERISTICS OF COLOMBIAN CLAYS USED IN **BRICK MANUFACTURING**

Composition according to XRD,

- Ouartz
- Kaolinite
- •Illite
- Montmorillonite

Colombian clays diffractogram ECI: Bioenergy - I Tomar, Portugal 2006

CHARACTERISTICS OF ASHES FROM URBAN SOLID WASTE INCINERATION

Composition according to XRD, IRS, TG, DTA

PH	6.5
Moisture	3.2 %
Organic Matter (Volatil solids)	42.3 %
Inorganic Material (SiO ₂ Al ₂ O ₃ , CaO, Fe ₂ O ₃)	48.0 %

CONTENT OF HEAVY METALS IN ASHES FROM COLOMBIAN URBAN SOLID WASTE INCINERATION IN ACCORDING TO TCLP - AAS (mg/Kg)

Arsenic (As)	1.120
Barium (Ba)	2.260
Cadmium (Cd)	0.430
Total Chromium(Cr)	3.450
Copper (Cu)	1.560
Mercury (Hg)	0.023
Magnesium (Mg)	4.720
Nickel (Ni)	3.370
Lead (Pb)	1.230
Silver (Ag)	0.083
Selenium(Se)	0.221
Zinc (Zn)	2.270

HEAVY METAL CONTENT IN TCLP TEST BRICKS MANUFACTURED WITH CLAY AND ASH MIXTURES (CA) FROM THE INCINERATION OF URBAN SOLID WASTES IN COLOMBIA IN mg/L

METAL	ASH	CA 99-1	CA 95-5	CA 90-10	CA 80-20	CA 60-40	STANDARD	REDUCTION (%)
As	1.120	0.001	0.001	0.003	0.008	0.012	5.00	92-99
Cd	0.435	0.020	0.029	0.031	0.035	0.057	1.00	84-99
Cr	3.452	0.035	0.048	0.054	0.074	0.104	5.00	89-98
Hg	0.024	ND	ND	ND	ND	ND	0.20	>70%
Ni	3.457	0.025	0.042	0.063	0.076	0.098	5.00	94-99
Pb	1.238	0.020	0.023	0.042	0.047	0.052	5.00	95-99
Se	0.364	0.002	0.003	0.008	0.012	0.018	1.00	82-96
Zn	3.375	0.008	0.024	0.035	0.058	0.092	-	95-99

ND=Non Detectable

RESULT ANALYSIS

According to published results, physical and chemical interaction between clays and ashes, may additionaly occur in the SS process. It can be explained by similarities between the sludges inorganic components $(SiO_2, Al_2O_3, CaO, Fe_2O_3)$ and the principal compounds of clays: SiO₂, Al₂O₃ y Fe₂O₃ The mixture of this two susbtances and their firing above 1000°C, eliminates any organic content and inhibits another possible formation. At the same time, the final material is solidified making it physically and chemically inert.

FABRICATION PROCESS BRICKS OF CLAY-ASHES MIXTURES

Stages of Clay–Ash mixture and water addition in extrision machine

Bricks exite from the extrusion machine and storage previously to introduce in the oven

CONCLUSIONS

- 1. According to results, the use of Hoffman type ovens to co-incinerate MSW and produce bricks, could be possible with air pollution control adaptation, but is necessary specific studies that include MSW from other places and ovens to confirm and validate these conclusions.
- 2. The leaching tests results in the clay-ashes mixtures, show reductions on heavy metal concentrations in test bricks. The heavy metal concentration in lechates of encapsulated ashes was 70% to 99% lower than nontreated ashes.
- 3. Although the first leaching tests provide no conclusion about the optimum mixture of clay and ashes, a greater percentage of reduction is observed in mixtures with 99-1, 95-5 and 90-10 clay-ash proportions respectively.

THANK YOU VERY MUCH...!