CONVERSION OF LIGNOCELLULOSICS TO BIOFUELS

Bioenergy - I: From Concept to Commercial Processes March 5-10, 2006 Tomar, Portugal

Maria Costa-Ferreira João Matos de Sousa

INETI National Institute for Engineering, Technology and Innovation Portugal

Policy

The lignin factor in bioconversion of lignocellulosics

Portuguese pulp and paper industry

Scenarios for Fischer Tropsch diesel conversion

Overall considerations

EXTERNAL DEPENDENCE ON PRIMARY ENERGY SOURCE

In the resolution of the Council of Ministers n° 63/2003, the Portuguese Government lists its objectives for Portuguese energy policy. Its implementation follows three strategic axes:

- 1 Maintain security of national energy supply
- 2 Promote sustainable development
- 3 Promote national competitiveness

Promotion of • New objectives for energy from renewable sources • New objectives for energy from renewable sources • Section 2000 MWU • Program for solar-heated water • New objectives for energy from renewable sources • Section 2000 MWU • New objectives for energy from renewable sources • Section 2000 MWU • Solar-heated water • New objectives for energy from renewable sources • Section 2000 MWU • Solar-heated water

Implementation of a Plan for increasing Energy efficiency

- Creation of a carbon tax
- Legislation on efficient energy use in buildings
- Application of the Directive on cogeneration
- Introduction of alternative fuels

Increase in Energy efficiency

Biomass

RESIDUES FROM MAIN INDUSTRIAL ACTIVITIES

ACTIVITY	Non-toxic residues	Toxic residues	nd	Total (ton)
Production of textiles	1 471 782	15 008	10	1 486 801
Clothing industry, dyeing	374 598	116	70	374 784
Leather tanning and finishing	1 377 012	279	47	1 377 338
Cork and wood industry	2 205 155	12 404	605	2 218 164
Pulp and paper industry	582 272	2 078	0	584 350

RESIDUES FROM WOOD PROCESSING INDUSTRIES

TYPICAL % COMPOSITION OF DIFFERENT LIGNOCELLULOSICS

	Lignin	Ash	Cellulose	Hemicellulose
Softwood	27 - 30	2	35 - 40	25 - 30
Hardwood	20 - 25	2	45 - 50	20 - 25
Wheat straw	15	8	33	25
Waste newspaper	16	trace	61	20

From enzymes

LIGNIN AND CELLULOSE STRUCTURE

TOOLS FOR STUDYING LIGNIN BIOTRANSFORMATION

In vivo labelled pine by growth on [¹⁴-C] -ferulic acid (different positions)

Synthetic lignins (DHPs) coniferyl alcohol labelled

¹⁴C- kraft pulp (CLKP)

Mineralization can be followed by the release of ¹⁴CO₂

LIGNIN AND MANGANESE PEROXIDASE

Source: M. Hofrichter, Enzyme and Microbial Technology 30 (2002) 454–466

POSSIBLE COUPLING OF LIGNIN AND CELLULOSE BIOTRANSFORMATION

LOW MOLECULAR WEIGHT REDOX MEDIATORS

IN VITRO LIGNIN BIODEGRADATION

Pleurotus sp.

Versatile peroxidase/laccase

- a. ether linkage
- b. C4 ether breakdown
- c. aromatic ring cleavage
- d. $C\alpha$ -C β breakdown
- e. demethoxylation
- j. re-oxidation
- h. repolymerization

AAD = aryl alcohol dehydrogenase AAO = aryl alcohol oxidase

CHALLENGE

Given our incomplete understanding of how lignin is biotransformed, need to invest more in R & D.

Many potential benefits/applications in developing a simple & costeffective biosystem eg. for pretreatment of biomass for bioenergy

>or for application in the pulp and paper industry

PAPER MAKING DIAGRAM

EU PULP PRODUCERS

Source: CELPA 2004 STATISTICS BULLETIN

INVESTMENT, LABOUR PRODUCTIVITY AND ADDED VALUE IN P&P INDUSTRY

Source: CELPA 2004 STATISTICS BULLETIN

SOURCE OF SOLID RESIDUES WITHIN PULP AND PAPER PROCESSING INDUSTRY

FATE OF RESIDUES FROM PULP AND PAPER PROCESSING INDUSTRY

Source: CELPA 2004 STATISTICS BULLETIN

FROM LIGNOCELLULOSICS TO FT-DIESEL

SCENARIO I

Biomass is used for generating energy

Hydrogen via the homogeneous water gas reaction

Oxygen and nitrogen via air separation

Biomass to diesel conversion ratio (w/w) 9.3 : 1 (35% water)

SCENARIO II (future)

Energy, hydrogen and oxygen produced from renewables Biomass to diesel conversion ratio 3.4 : 1 (35% water)

ASSUMPTIONS

Equivalent conversion for different residues Transportation of biomass about 100 Km

RESIDUE DIESEL EQUIVALENT SCENARIO I

RESIDUE DIESEL EQUIVALENT SCENARIO II

TOTAL RESIDUE DIESEL EQUIVALENT

10³ton diesel

OVERALL CONSIDERATIONS I

Technological Challenges

Biomass

Process is versatile;feedstock; wet feedstocks do not need to be dried Feedstock cost is important (at 4 €/GJ accounts of about half of overall cost) Biomass supply chain needs to be established Trasportation costs need to be considered (vs pyrolysis oil option) Biomass pre-treatment variable ?

Gasification

Gas clean-up

Economy of scale

FT diesel can be "designed" to meet developments in engine design

OVERALL CONSIDERATIONS II

Portugal

- FT diesel production is in tune with the activity of major Portuguese energy suppliers Greater market penetration in Europe
- Sustainable development of deserted rural areas (eg. Alentejo) by energy crops
- Forest fires

Since 1980 30% of Portugal burnt out by fires

(2001-2004) 450 000 ha of plantations plus 335 000 ha of forest (wild)

17.7% of pine

13.2% of Eucalyptus

Net energy needs of the pulp and paper industry can be met

ACKNOWLEDGMENTS

Thank You !

TTT

1

O