Bioenergy – I: From Concept to Commercial Processes March 5-10, 2006, Tomar, Portugal

A comparative assessment of rapeseed oil and biodiesel (RME) to replace petroleum diesel use in transportation

João Malça

Dept. of Mechanical Engineering, ISEC, Coimbra Polytechnic Institute jmalca@dem.uc.pt

Fausto Freire

Dept. of Mechanical Engineerin FCTUC, University of Coimbra fausto.freire@dem.uc.pt

Acknowledgments:

Stelios Rozakis, INRA, France & Agricultural University of Athens, Gree

brought to you l

Structure

Motivation and background

Biofuels & Life Cycle thinking... relevance for decision-supporting

Methodology

- Environmental Life Cycle assessment & Life Cycle Energy Analysis
- Energy efficiency... Renewability... GHG emissions
- Multifunctionality and Allocation

Case Study: Biodiesel Chain in France

- RO and RME life cycle modeling
- Flowchart, energy inventory, co(by)-products allocation
- Rapeseed oil vs RME (Biodiesel). Comparison with fossil diesel

Preliminary Results and Conclusions

- Energy efficiency and renewability.
- Allocation methods: implications...
- Avoided GHG emissions and Fossil Energy Savings

Biofuel Life Cycle

Eco-certification for biofuels?

WWF asks for mandatory eco-certification for biofuels 08 February 2006:

"It is imperative that the EU establishes a legally binding certification system for both imported and domestic biofuels," said Elizabeth Guttenstein, Head of European Agriculture and Rural Development at WWF. "The certification system must be based on enhancing the **potential of biofuels to cut GHG emissions**, while avoiding the wider environmental impacts of biofuel production. This will help to **protect the environment in developing countries and contribute to CO2 emissions reductions in the EU in a sustainable way**."

"The current practice of automatically classifying all biofuels as 'renewable' regardless of how they are produced is counterproductive," commented Dr Stephan Singer, Head of WWF's European Climate & Energy Policy Unit. "If the EU is to meet its Kyoto and renewable targets, **it must promote those biofuels which offer the greatest greenhouse gas savings**, such as sustainably produced forest and wood products."

Motivation

Need of Life Cycle decision-support tools assessing (integrating?!) Energy, Environmental and Economic analysis (or optimization!)

Environmental Life Cycle Assessment (LCA)

But how efficient in energy, environmental and economic terms ?

Life Cycle Methodology

Biofuel Life Cycle Assessment: To demonstrate that biofuel has a positive energy balance, saves GHG emissions and to quantify how much biofuel is renewable, a life cycle approach must be employed

- It includes setting the system boundaries, designing the flow diagrams, collecting the data for each of these processes, performing allocation steps for multifunctional processes.
- Its main result is an inventory table, in which the material and energy flows are compiled and quantified

Goals

- Identify opportunities for improvement and optimization
- To have an holist view, enabling the integration of energy, environment and economic aspects through the entire life cycle
- Comparison with fossil fuels and comparison of different biofuel schemes: Calculate fossil energy savings, GHG emissions avoided and analyze the *renewability* of biofuels.

Energy Eficiency Indicators and Renewability

In the energy analysis literature several indicators are used (lack of consensus) **A novel Renewability indicator**¹ Fossil E Energy Renewability Efficiency, *ERE* Net energy value: *NEV* = $E_{out} - E_{fossil,in}$ $ERE = (E_{out} - E_{fossil,in})/E_{out}$ 0% < ERE < 100% Renewable $ERE = (E_{out} - E_{fossil,in})/E_{out}$ Mon renewable (primary fossil energy input per delivered biofuel energy output)

E_{out} – Fuel energy content (FEC) per unit of mass (LHV)

 E_{fóssil,in} – Total accumulated inputs of fossil energy (in primary energy terms) needed to produce one unit of mass of biofuel

¹ Malça J and Freire F. (2006) *Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation*. **Energy the International Journal** (forthcoming)

Calculation of GHG emissions and abatement costs

- GHG emissions (direct + indirect) for the bioethanol life cycle
 - i) The total amount of each GHG (CO₂, CH₄, N₂O, ...) is calculated by using suitable coefficients and combustion emission factors
 - *ii)* Individual GHG emissions are aggregated in an indicator of Global Warming Potential (GWP), obtained by multiplying individual emissions by their corresponding impact factors (CO2=1, CH4=23 and N2O=296; 100 year time horizon)
- Economic aspects
- **Biofuel production costs**

Calculation of GHG abatement costs [€kg CO2eq]

Foreground and Background Systems

Biofuel production generates several co(by)-products...

• Multifunctionality: How should the resource consumption and emissions be distributed over the various co(by)-products?

• An appropriate procedure is required to partition the relevant inputs and outputs to the functional unit under study

- The international standards on LCA (ISO 14041) state that
- i) allocation should be avoided where possible by sub-division or system boundary expansion
- *ii)* allocation should be undertaken based on causal relationships of the co-products (output weight, energy content, economic value, replacement value)

Rapeseed Oil (RO) and RME (biodiesel) Life Cycle Modeling: Goal and scope

Functional unit: 1MJ of fuel energy delivered to road transport vehicles

Adequate basis for comparison of the function provided by different (bio)fuels Well-to-Tank analysis

 Primary focus of the study: Establishing energy and GHG balances for the RO and RME chains in France

Comparison with petroleum diesel

• Calculate avoided GHG emissions and energy savings for RO and RME replacing petroleum diesel use, per unit of energy, ...

RO and RME Modeling Life Cycle production chain

RO and RME Modeling Main Assumptions

 A reference system consisting of set-aside agricultural land was considered

 Biomass yields, fertilizer application rates, road and rail transportation models apply to the French case study

• Energy embodied in the materials used to construct biofuel plants, transportation equipment and farm machinery ("capital energy") was not considered

• GWP was calculated for CO₂, CH₄ and N₂O; other GHG are not taken into account (negligible emissions)

Main Inventory Results

Agricultural and industrial data for the annual production of **1 tonne of RME**

	Cultivation	Oil extraction	Esterification
Land [ha]	-0.787		
N fertilizer [kg]	-157.5	- 1	
P_2O_5 fertilizer [kg]	-47.2	-	1 20
K ₂ O fertilizer [kg]	-94.5		
Straw [t]	3.47		<u></u>
Oilseed rape [t]	2.61	-2.61	
Rapeseed cake [t]	and the second sec	1.59	
→ Rapeseed oil [t]		1.02	-1.02
Methanol [t]	/-		-0.1
Glycerin [t]			0.1
$\rightarrow RME[t]$	_	-	1

Coefs. conversao en. primária	Natural Gas	1,1
	Oil	1,2
	Coal	1,06
	Electricity	3,04

IPCC GWP coeffs:	CO2	1
(100 years)	CH4	23
	N2O	296

			No	allocation, per h	ectar					
Epelly 1993, p.42. Nas outras		Imput		Output						
folhas p/ esta cadeia, ainda	Quantity	Prim Energy	CO2	CH4	N2O	Total GHG				
nao tinna incluido um		MJ/ha	kg/ha	kg/ha	kg/ha	kg/ha				
reference system.										
Cultivation										
N fertilizer [kg/ha]	211,5	10976,85	554,13	2,92E+00	2,50E-02	6,29E+02	and the second second second			
P2O5 fertilizer [kg/ha]	34	663	40,80	8,09E-02	7,99E-03	4,50E+01		Area [ha]	1	
K2O fertilizer [kg/ha]	33,5	305,185	17,82	4,96E-02	2,18E-03	1,96E+01		Alea [lia]	· · · · ·	-
Pesticides [kg/ha]	5	387,5	11,50	2,62E-02	1,92E-03	1,27E+01		Yield [ton{ha]	7,62	and a second
Diesel fuel [l/ha]	115		334,65	1,76E-02	4,66E-03	3,36E+02	and the second	Wheat [ton]	7.62	1.0
Reference system [l/ha]	-22,8	-900,6	-66,35	-3,49E-03	-9,23E-04	-6,67E+01		Theat [ton]	7,02	
Wheat Transp (road)								Ethanol [ton]	2,13	The second second
Diesel fuel [I]	5,03	198,6	15,79	2,89E-03	7,44E-03	1,81E+01		Ethanol [I]	2683	
Starch Plant + Distillery								DDGS [ton]	2 873	A DESCRIPTION OF
Natural gas [kg/ha]	787,5	39849,6	1952,63	4,06E+00	3,62E-03	2,05E+03			2,075	
Electricity [MJ/ha]	4046,5	12301,2	133,25	2,79E-01	1,46E-03	1,40E+02		ETBE [ton]	4,53	1 1 1 1 L
savings (DDGS credit)							100 C 100 C	ETRE [I]	6081	1.200
Ethanol Transp (rail)									0001	A
Diesel+Electricity [t.km]	426	198,9	2,45	4,00E-04	0,00E+00	2,46E+00				
ETHANOL						and the second se				
Total [/ha]		68522,9	2996,7	7,429	0,053	3183,3				
Total [/ton eth]		32170,4	1406,9	3,488	0,025	1494,5				
Total [/MJ eth]		1,200	0,052	1,30E-04	9,34E-07	0,0558				
ERenE [%]		-20,0								
ERenE_2 [%]										
ETBE Production										
Isobutene [kg/ton ETBE]	530	113250,0	2,83E+03	1,08E+01	3,75E-04	3082,22				
Natural Gas [kg/ ton ETBE]	59	13523,9	6,63E+02	1,38E+00	1,23E-03	694,70				
Electricity [MJ/ton ETBE]	50,4	694,1	7,52E+00	1,57E-02	8,26E-05	7,90				
ETBE+gasoline Transp (road)										
Diesel fuel [l/ha]	27,01	1066,8	8,48E+01	1,55E-02	4,00E-02	97,00				
ETBE										
Total [/ha]		197057,6	6584,7	19,67	0,09	7065,1				
Total [/ton ETBE]		43500.6	1453.6	4.34	0.0210	1559.6				
Total [/MJ ETBE]		1,205	0,040	1,20E-04	5,81E-07	0,0432				
ERenE [%]		-20.5								
ERenE 2 [%]		,-								

Coefficients	Prim Energy	CO2	CH4	N2O
N fertilizer [kg]	51,9	2,62	1,38E-02	1,18E-04
P2O5 fertilizer [kg]	19,5	1,2	2,38E-03	2,35E-04
K2O Fertilizer [kg]	9,11	0,532	1,48E-03	6,51E-05
Pesticides	77,5	2,3	5,23E-03	3,83E-04
Diesel fuel [I] tractor	39,5	2,91	1,53E-04	4,05E-05
Diesel fuel [I] lorry	39,5	3,14	5,75E-04	1,48E-03
Electricity [MJ]	3,04	0,03293	6,90E-05	3,62E-07
Natural gas [kg]	50,6	0,0539	1,12E-04	1,00E-07
Transport by rail [t.km]	0,467	5,75E-03	9,40E-07	0
Oil [kg]	49,8	8,11E-02	2,30E-05	6,00E-07
Isobutene [kg]	25	1,18E+00	4,51E-03	1,56E-07
Coal [kg]	30,952	2,84E+00	1,07E-02	3,65E-05
	-0,1055	-4,02E+00	-2,90E-02	-4,86E-02

Allocation Procedures

- 1. Allocation was undertaken based on causal relationships:
 - Output weight
 - Energy content
 - Economic value
- 2. Replacement value of co-products (each by-product generates energy and emission credits equals to those associated with producing a substitute for that co-product):
 - Glycerin can be used instead of synthetic glycerin or propylene glycol
 - Rapeseed cake can replace soy meal as a high-protein animal feed
 - Glycerin can be used for process heat
- 3. Results are also calculated without co-product credits

Sensitivity Analysis:

Allocation methods and implications for the results (energy efficiency, renewability and GHG emissions)

Data Used for Allocation

Allocation	Mass	Economic	Energy	Replacement credits of co-products			
Procedure	[kg/ kg RO]	(Market value) [€tonne]	(LHV) — [MJ/kg]	Energy [MJ/kg cakes]	GHG [kg CO ₂ eq/kg cakes]		
Cakes	1.57	100	16.0	2.13	0.184		
RO	1	158	37.2	_	_		

Table 1 – Rapeseed oil (RO) chain

Table 2 – RME (biodiesel) chain

Allocation Procedure		Mass	Economic	Energy	Replacement credits of co-products			
		[kg/kg RME]	(Market value)	(LHV)	Energy	GHG		
			[etome]	[WJ/Kg]	[MJ/kg co-product]	[kg CO ₂ eq/kg co-product]		
Cakes		1.59	100	16.0	2.13	0.184		
RO		1.015	158	37.2	-	_		
	(a)				68.7	4.77		
Glycerine	(b)	0.1	457	16.0	13.8	0.71		
	(c)				1.9	0.37		
RME		1	158	37.5	-	_		

(a) replacing a typical chemical product (propylene glycol)

(b) for process heat

(c) for animal fodder

Results (1)

Ereq [MJ/MJ]: primary fossil energy input per delivered biofuel energy output Total GHG emissions (kg Co2 eq/MJ)

	Prim Energy	1 0(1	Total GHG	10/1
	MJ/MJ RME	[%]	kg/MJ RME	[%]
Cultivation	0,3191	49,2	4,51E-02	73,5
Rapeseed Transp (road)	0,0072	1,1	6,59E-04	1,1
Grain's drying	0,0117	1,8	1,33E-04	0,2
Oil extraction	0,0903	13,9	3,23E-03	5,3
Degumming/Refining	0,0114	1,8	5,29E-04	0,9
Esterification	0,2048	31,6	1,14E-02	18,6
RME distribution	0,0040	0,6	2,68E-04	0,4
Total	0,648	100,0	0,061	100,0

NB: No allocation (no credits for co(by-)products_!)

Results (2)

		Prim MJ/I		Total GHG kg/MJ RME				
	Mass	Market value	Energy	Replacement	Mass	Market value	Energy	Replacement
Cultivation	0,1131	0,1247	0,1522	0,3191	1,60E-02	1,76E-02	2,15E-02	4,51E-02
Rapeseed Transp (road)	0,0026	0,0028	0,0035	0,0072	2,34E-04	2,58E-04	3,14E-04	6,59E-04
Grain's drying	0,0041	0,0046	0,0056	0,0117	4,72E-05	5,21E-05	6,35E-05	1,33E-04
Oil extraction	0,0320	0,0353	0,0431	-0,0067	1,14E-03	1,26E-03	1,54E-03	-6,14E-03
Degumming/Refining	0,0103	0,0088	0,0109	0,0114	4,81E-04	4,10E-04	5,07E-04	5,29E-04
Esterification	0,1862	0,1588	0,1964	0,0216	1,04E-02	8,84E-03	1,09E-02	-1,30E-03
RME distribution	0.0040	0,0040	0,0040	0,0040	2,68E-04	2,68E-04	2,68E-04	2,68 E- 04
Total	0,352	0,339	0,416	0,368	0,029	0,029	0,035	0,039

Results (3)

Comparative ERenEf values

Comparative GHG emissions

 Both RO and RME are clearly renewable, even before adding co-product energy credits.

• A maximum ERE value of about 80% (mass allocation) was obtained for RO, meaning that than about 80% of the fuel energy content is indeed renewable energy

- In contrast (and as expected!), petroleum diesel exhibits a negative ERenEf value
- Significant avoided GHG emissions per MJ of delivered energy can be obtained
- RO is more energy and GHG efficient than RME

•co-product credits cannot be ignored \rightarrow Allocation has influence in the results

GHG and energy savings¹ per ton, GJ and hectare, for RO versus RME replacing petroleum diesel

	Prima	ary energy sa [GJ]	vings	Avoided GHG emissions [ton CO ₂ eq]			
	per ton	per GJ	per ha	per ton	per GJ	per ha	
RO	32.74	0.88	42.25	2.18	58.7	2.81	
RME	27.09	0.72	34.40	1.92	51.2	2.44	

¹ averaged values (mass, energy and economic allocation)

Main Conclusions

 Biodiesel (RME) and/or RO production is energy efficient, exhibiting a high degree of renewability, thus, reducing fossil fuel depletion

• Significant net savings in GHG emissions are achieved by replacing petroleum diesel with RO or RME

• Allocation plays a major role, emphasizing the importance of optimum use of co-products

• These conclusions support EU *Directive 2003/96/EC*, on energy taxation and *Directive 2003/30/EC*, on the promotion of the use of biofuels

Some of our work on biofuels...

- Malça J, Freire F. (2006) *Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl tertiary butyl ether (bioETBE): assessing the implications of allocation*. Energy the International Journal (forthcoming)
- Malça J, Rozakis S, Freire F, (2005) *Bioethanol replacing gasoline: Greenhouse gas emissions reduction, life cycle energy savings and economic aspects.* 2nd Int Conf on Life Cycle Management. Spain. pp. 510-514
- Malça J, Santos C, Freire F. (2005) *Life Cycle Assessment of bioethanol from sugar beet and wheat comparison with gasoline. 9th* International Chemical Engineering Conference. Sept 21-23, 2005
- Freire F, Malça J, Rozakis S: (2004) Integrated Economic and Environmental Life Cycle Optimization: an Application to Biofuel Production in France, Multiple Criteria Decision Aiding, pp. 247-272
- Malça J, Freire F, (2004) Life cycle energy analysis for bioethanol: allocation methods and implications for energy efficiency and renewability. Energy-Efficient, Cost-effective and Environmentally-Sustainable Systems and Processes. Edited by Rivero, Monroy, Pulido, Tsatsaronis. México, vol 3, pp. 997-1010
- Malça, J and Freire, F. *Carbon and energy balances for biodiesel: Life-cycle emissions and energy savings.* Proceedings of the 2nd International Ukrainian Conference on Biomass for Energy. 2004.
- Malça, J, Rozakis, S, and Freire, F. (2004) *Biocombustíveis: energia alternativa (renovável?). Emissőes de GEE e avaliação de eficiencia energética. Metodologia e Aplicaçőes.*, ISEP, Novembro de 2004, Porto.
- Freire, F, Malça, J, and Rozakis, S. (2002) *Biofuel production systems in France: integrated economic* and environmental life cycle optimization. II Int. Conf. on Mechanical Engineering and VI Int Conf. on Industrial Thermal Energy, Renewable Energy and the Environment.
- Freire, F. and Thore, S. (2002) *Life Cycle Activity Analysis: an integrated environmental and economic mathematical programming decision-support model*. Proceedings of the Seminar "Comprehensible economic and spatial bio-energy modeling" Options Méditerranéenes, n. 48 CHIEAM.pp. 91-101.

Please send an email (fausto.freire@dem.uc.pt)) for copies