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• Energy efficiency and renewability. 
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• Possible reduction of CO2 emissions
• Possible Energy Savings (reduction of fossil fuel resources) 
• Intensive use of soils, Intensive use of fertilizers and pesticides:

– Possible Eutrofication and Acidification

Biofuel Life Cycle

CO2 – neutral fuel cycle!!!

Carbon Dioxide

Foreground

Background

Resources

Fossil Energy

Env. Burdens
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Eco-certification for biofuels?
WWF asks for mandatory eco-certification for biofuels

08 February 2006:

“It is imperative that the EU establishes a legally binding certification 
system for both imported and domestic biofuels,” said Elizabeth 
Guttenstein, Head of European Agriculture and Rural Development 
at WWF. “The certification system must be based on enhancing the
potential of biofuels to cut GHG emissions, while avoiding the 
wider environmental impacts of biofuel production. This will help to 
protect the environment in developing countries and contribute 
to CO2 emissions reductions in the EU in a sustainable way.” 

“The current practice of automatically classifying all biofuels as 
‘renewable’ regardless of how they are produced is counter-
productive,” commented Dr Stephan Singer, Head of WWF’s
European Climate & Energy Policy Unit. “If the EU is to meet its
Kyoto and renewable targets, it must promote those biofuels 
which offer the greatest greenhouse gas savings, such as 
sustainably produced forest and wood products.”
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Motivation 
The Relevance of considering the life cycle...

Environmental Life Cycle Assessment (LCA)

Biofuels

Renewable

Environmental
friendly

Alternative

?

?

Life Cycle Energy Analysis (LCEA)

Need of Life Cycle decision-support tools 
assessing (integrating?!) Energy, Environmental 

and Economic analysis (or optimization!)

But how efficient in energy, 
environmental and economic terms ?
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Life Cycle Methodology

• It includes setting the system boundaries, designing the flow diagrams, 
collecting the data for each of these processes, performing allocation 
steps for multifunctional processes. 

• Its main result is an inventory table, in which the material and energy 
flows are compiled and quantified

Goals
– Identify opportunities for improvement and optimization 
– To have an holist view, enabling the integration of energy, environment 

and economic aspects through the entire life cycle
– Comparison with fossil fuels and comparison of different biofuel 

schemes: Calculate fossil energy savings, GHG emissions avoided 
and analyze the renewability renewability of biofuels.

Biofuel Life Cycle Assessment: To demonstrate that biofuel has a 
positive energy balance, saves GHG emissions and to quantify how
much biofuel is renewable, a life cycle approach must be employed
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Energy Eficiency Indicators and Renewability

In the energy analysis literature several indicators are used
(lack of consensus)

• Fossil Energy Ratio: η(FER) = Eout/Efóssil,in

• Net energy value: NEV = Eout – Efóssil,in

Primary Energy Requirements, Ereq = Efóssil,in/ Eout

(primary fossil energy input per delivered biofuel energy output)
ERE < 0%

ERE = (Eout – Efóssil,in)/ Eout

Energy Renewability Efficiency, ERE

A novel Renewability indicator1

0% < ERE < 100% Renewable

Non renewable

1 Malça J and Freire F. (2006) Renewability and life-cycle energy efficiency of bioethanol and bio-ethyl 
tertiary butyl ether (bioETBE): assessing the implications of allocation. Energy the International Journal

(forthcoming)

• Eout – Fuel energy content (FEC) per unit of mass (LHV)
• Efóssil,in – Total accumulated inputs of fossil energy (in primary energy terms) 

needed to produce one unit of mass of biofuel
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• GHG emissions (direct + indirect) for the bioethanol life cycle

i) The total amount of each GHG (CO2, CH4, N2O, …) is calculated
by using suitable coefficients and combustion emission 
factors

ii) Individual GHG emissions are aggregated in an indicator of
Global Warming Potential (GWP), obtained by multiplying
individual emissions by their corresponding impact factors
(CO2=1, CH4=23 and N2O=296; 100 year time horizon)

• Economic aspects

Biofuel production costs

Calculation of GHG abatement costs [€/kg CO2eq]

Calculation of GHG emissions and abatement costs
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Environment

Background
System

Foreground System

Functional
Output

Biofuel
MJ…
km…

Foreground and Background Systems

Indirect
burdens

Direct 
burdens

Fossil Fuels, 
Fertilizers,

Etc…

Materials/energy
recovered

(avoided burdens)

Primary resources
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Biofuel production generates several co(by)-products…

• Multifunctionality: How should the resource consumption and 
emissions be distributed over the various co(by)-products?

• An appropriate procedure is required to partition the relevant 
inputs and outputs to the functional unit under study

• The international standards on LCA (ISO 14041) state that 
i) allocation should be avoided where possible by sub-division or

system boundary expansion

ii) allocation should be undertaken based on causal relationships
of the co-products (output weight, energy content, economic
value, replacement value)

Multifunctionality and Allocation
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Rapeseed Oil (RO) and RME (biodiesel)
Life Cycle Modeling: Goal and scope

Functional unit: 1MJ of fuel energy delivered to 
road transport vehicles

• Primary focus of the study: Establishing energy and 
GHG balances for the RO and RME chains in France

Adequate basis for comparison of the function 
provided by different (bio)fuels

• Calculate avoided GHG emissions and energy 
savings for RO and RME replacing petroleum 
diesel use, per unit of energy, …

• Comparison with petroleum diesel

Well-to-Tank analysis
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Rapeseed 
cultivation

Crushing, 
Degumming and 

Refining

Esterification RME-diesel 
blending

diesel (from fossil fuels)

Combustion:

(diesel engines)

cakes (rape meal) glycerin

fertilizers and 
pesticides

methanolstraw

Natural gas
Coal

Oil

Electricity RME

Combustion in 
modified diesel 

vehicles

diesel (from fossil fuels)

Foreground

Background

Rapeseed
oil

Legend

• Main products

• Co-(by-)products

RO and RME Modeling
Life Cycle production chain
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• A reference system consisting of set-aside agricultural 
land was considered

• Biomass yields, fertilizer application rates, road and rail 
transportation models apply to the French case study 

• Energy embodied in the materials used to construct 
biofuel plants, transportation equipment and farm 
machinery (“capital energy”) was not considered

• GWP was calculated for CO2, CH4 and N2O; other GHG 
are not taken into account (negligible emissions)

RO and RME Modeling
Main Assumptions
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 Cultivation Oil extraction Esterification 
Land [ha] –0.787 –– –– 
N fertilizer [kg] –157.5 –– –– 
P2O5 fertilizer [kg] –47.2 –– –– 
K2O fertilizer [kg] –94.5 –– –– 
Straw [t] 3.47 –– –– 
Oilseed rape [t] 2.61 -2.61 –– 
Rapeseed cake [t] –– 1.59 –– 
Rapeseed oil [t] –– 1.02 -1.02 
Methanol [t] –– –– -0.1 
Glycerin [t] –– –– 0.1 
RME [t] –– –– 1 

Agricultural and industrial data for the annual production of 1 tonne of RME

Main Inventory Results 
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IPCC GWP coeffs: CO2 1
(100 years) CH4 23

N2O 296

Imput Output
Quantity Prim Energy CO2 CH4 N2O Total GHG

MJ/ha kg/ha kg/ha kg/ha kg/ha

Cultivation
N fertilizer [kg/ha] 211,5 10976,85 554,13 2,92E+00 2,50E-02 6,29E+02
P2O5 fertilizer [kg/ha] 34 663 40,80 8,09E-02 7,99E-03 4,50E+01
K2O fertilizer [kg/ha] 33,5 305,185 17,82 4,96E-02 2,18E-03 1,96E+01
Pesticides [kg/ha] 5 387,5 11,50 2,62E-02 1,92E-03 1,27E+01
Diesel fuel [l/ha] 115 4542,5 334,65 1,76E-02 4,66E-03 3,36E+02
Reference system [l/ha] -22,8 -900,6 -66,35 -3,49E-03 -9,23E-04 -6,67E+01
Wheat Transp (road)
Diesel fuel [l] 5,03 198,6 15,79 2,89E-03 7,44E-03 1,81E+01
Starch Plant + Distillery
Natural gas [kg/ha] 787,5 39849,6 1952,63 4,06E+00 3,62E-03 2,05E+03
Electricity [MJ/ha] 4046,5 12301,2 133,25 2,79E-01 1,46E-03 1,40E+02
savings (DDGS credit)
Ethanol Transp (rail)
Diesel+Electricity [t.km] 426 198,9 2,45 4,00E-04 0,00E+00 2,46E+00
ETHANOL

Total [/ha] 68522,9 2996,7 7,429 0,053 3183,3
Total [/ton eth] 32170,4 1406,9 3,488 0,025 1494,5
Total [/MJ eth] 1,200 0,052 1,30E-04 9,34E-07 0,0558

ERenE [%] -20,0
ERenE_2 [%]

ETBE Production
Isobutene [kg/ton ETBE] 530 113250,0 2,83E+03 1,08E+01 3,75E-04 3082,22
Natural Gas [kg/ ton ETBE]  59 13523,9 6,63E+02 1,38E+00 1,23E-03 694,70
Electricity [MJ/ton ETBE] 50,4 694,1 7,52E+00 1,57E-02 8,26E-05 7,90
ETBE+gasoline Transp (road)
Diesel fuel [l/ha] 27,01 1066,8 8,48E+01 1,55E-02 4,00E-02 97,00
ETBE

Total [/ha] 197057,6 6584,7 19,67 0,09 7065,1
Total [/ton ETBE] 43500,6 1453,6 4,34 0,0210 1559,6
Total [/MJ ETBE] 1,205 0,040 1,20E-04 5,81E-07 0,0432

ERenE [%] -20,5
ERenE_2 [%]

No allocation, per hectar
Epelly 1993, p.42. Nas outras 
folhas p/ esta cadeia, ainda 
não tinha incluído um 
reference system.

Coefs. conversao en. primária Natural Gas 1,1
Oil 1,2

Coal 1,06
Electricity 3,04

Area [ha] 1
Yield [ton{ha] 7,62
Wheat [ton] 7,62
Ethanol [ton] 2,13

Ethanol [l] 2683
DDGS [ton] 2,873
ETBE [ton] 4,53

ETBE [l] 6081

Coefficients Prim Energy CO2 CH4 N2O
N fertilizer [kg] 51,9 2,62 1,38E-02 1,18E-04

P2O5 fertilizer [kg] 19,5 1,2 2,38E-03 2,35E-04
K2O Fertilizer [kg] 9,11 0,532 1,48E-03 6,51E-05

Pesticides 77,5 2,3 5,23E-03 3,83E-04
Diesel fuel [l] tractor 39,5 2,91 1,53E-04 4,05E-05
Diesel fuel [l] lorry 39,5 3,14 5,75E-04 1,48E-03

Electricity [MJ] 3,04 0,03293 6,90E-05 3,62E-07
Natural gas [kg] 50,6 0,0539 1,12E-04 1,00E-07

Transport by rail [t.km] 0,467 5,75E-03 9,40E-07 0
Oil [kg] 49,8 8,11E-02 2,30E-05 6,00E-07

Isobutene [kg] 25 1,18E+00 4,51E-03 1,56E-07
Coal [kg] 30,952 2,84E+00 1,07E-02 3,65E-05

soyameal replaced by DDGS -0,1055 -4,02E+00 -2,90E-02 -4,86E-02
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1. Allocation was undertaken based on causal relationships:
– Output weight
– Energy content
– Economic value

3. Results are also calculated without co-product credits

2. Replacement value of co-products (each by-product 
generates energy and emission credits equals to those 
associated with producing a substitute for that co-product):

– Glycerin can be used instead of synthetic glycerin or propylene glycol
– Rapeseed cake can replace soy meal as a high-protein animal feed
– Glycerin can be used for process heat 

Sensitivity Analysis:
Allocation methods and implications for the results 
(energy efficiency, renewability and GHG emissions)

Allocation Procedures
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Table 1 – Rapeseed oil (RO) chain

Data Used for Allocation

Replacement credits of co-products Allocation 
Procedure 

Mass 
[kg/ kg RO]

Economic 
(Market value) 

[€/tonne] 

Energy 
(LHV) 

[MJ/kg] 
Energy 

 [MJ/kg cakes] 
GHG 

 [kg CO2eq/kg cakes]
Cakes 1.57 100 16.0 2.13 0.184 

RO 1 158 37.2 – – 

Table 2 – RME (biodiesel) chain

Replacement credits of co-products Allocation 
Procedure 

Mass 
[kg/kg RME]

Economic 
(Market value)

[€/tonne] 

Energy 
(LHV) 

[MJ/kg] 
Energy  

[MJ/kg co-product] 
GHG 

 [kg CO2eq/kg co-product] 
Cakes 1.59 100 16.0 2.13 0.184 

RO 1.015 158 37.2 – – 
(a)    68.7 4.77 
(b) 0.1 457 16.0 13.8 0.71 Glycerine 
(c)    1.9 0.37 

RME 1 158 37.5 – – 

(a) replacing a typical chemical product (propylene glycol)
(b) for process heat 
(c) for animal fodder
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Results (1)
Ereq [MJ/MJ]: primary fossil energy input per delivered biofuel energy output
Total GHG emissions (kg Co2 eq/MJ)

 Prim Energy   Total GHG   
 MJ/MJ RME [%] kg/MJ RME [%] 
Cultivation 0,3191 49,2 4,51E-02 73,5 
Rapeseed Transp (road) 0,0072 1,1 6,59E-04 1,1 
Grain's drying 0,0117 1,8 1,33E-04 0,2 
Oil extraction 0,0903 13,9 3,23E-03 5,3 
Degumming/Refining 0,0114 1,8 5,29E-04 0,9 
Esterification 0,2048 31,6 1,14E-02 18,6 
RME distribution 0,0040 0,6 2,68E-04 0,4 

Total 0,648 100,0 0,061 100,0 
 

NB: No allocation (no credits for co(by-)products !)
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Results (2)

 Prim Energy Total GHG 
 MJ/MJ RME kg/MJ RME 
 Mass Market value Energy Replacement Mass Market value Energy Replacement 

Cultivation 0,1131 0,1247 0,1522 0,3191 1,60E-02 1,76E-02 2,15E-02 4,51E-02 
Rapeseed Transp (road) 0,0026 0,0028 0,0035 0,0072 2,34E-04 2,58E-04 3,14E-04 6,59E-04 
Grain's drying 0,0041 0,0046 0,0056 0,0117 4,72E-05 5,21E-05 6,35E-05 1,33E-04 
Oil extraction 0,0320 0,0353 0,0431 -0,0067 1,14E-03 1,26E-03 1,54E-03 -6,14E-03 
Degumming/Refining 0,0103 0,0088 0,0109 0,0114 4,81E-04 4,10E-04 5,07E-04 5,29E-04 
Esterification 0,1862 0,1588 0,1964 0,0216 1,04E-02 8,84E-03 1,09E-02 -1,30E-03 
RME distribution 0,0040 0,0040 0,0040 0,0040 2,68E-04 2,68E-04 2,68E-04 2,68E-04 

Total 0,352 0,339 0,416 0,368 0,029 0,029 0,035 0,039 
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• Both RO and RME are clearly renewable, even before adding co-product energy 
credits.
• A maximum ERE value of about 80% (mass allocation) was obtained for RO, 
meaning that than about 80% of the fuel energy content is indeed renewable energy
• In contrast (and as expected!), petroleum diesel exhibits a negative ERenEf value
• Significant  avoided GHG emissions per MJ of delivered energy can be obtained
• RO is more energy and GHG efficient than RME 

•co-product credits cannot be ignored Allocation has influence in the results

Comparative ERenEf values Comparative GHG emissions
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GHG and energy savings1 per ton, GJ and hectare,
for RO versus RME

replacing petroleum diesel

 Primary energy savings 
 [GJ] 

Avoided GHG emissions 
 [ton CO2eq] 

 per ton per GJ per ha per ton per GJ per ha 

RO 32.74 0.88 42.25 2.18 58.7 2.81 

RME 27.09 0.72 34.40 1.92 51.2 2.44 

1 averaged values (mass, energy and economic allocation)
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Main Conclusions

• Biodiesel (RME) and/or RO production is energy efficient, 
exhibiting a high degree of renewability, thus, reducing 
fossil fuel depletion

• Significant net savings in GHG emissions are achieved by 
replacing petroleum diesel with RO or RME

• Allocation plays a major role, emphasizing the importance 
of optimum use of co-products

• These conclusions support EU Directive 2003/96/EC, on 
energy taxation and Directive 2003/30/EC, on the promotion 
of the use of biofuels
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